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Background

Entity Resolution (ER): Identify the relational records 

that correspond to the same real-world entity.

id name ∙∙∙ price

30134

Apple Mac Mini 1.83GHz 

Intel Core 2 Duo Computer -

MB138LLA

∙∙∙ $599

id name ∙∙∙ price

20636

2873

Apple Mac mini Desktop -

MB138LL/A
∙∙∙ $574

Data source 1:

Data source 2: A same product.
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Background

Measurement on the Quality of an ER solution:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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Motivation

Pure machine-based ER solutions usually struggle in 

ensuring desired quality guarantees specified at 

both precision and recall fronts.

Precision ≥ The requirement ?
and

Recall ≥ The requirement ?
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Motivation

[1] A. Arasu, M. Gotz, et al. On active learning of record matching packages. SIGMOD 2010.

[2] K. Bellare, S. Iyengar, et al. Active Sampling for entity matching. SIGKDD 2012.

ER Techniques
Quality Guarantees

Precision Recall

Rules, Probabilistic Theory or 

Machine Learning based

Active-learning based [1][2]

HUMO

EnumerateBoundary[1]

Difference: cannot enforce comprehensive quality 

guarantees specified by both precision and recall 

metrics as HUMO does.

[1] Learns record matching 

packages such that 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
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Motivation

Humans usually perform better than machines in 

terms of quality, but human labor is much more 

expensive.

 Therefore, HUMO has been designed with the 

purpose of minimizing human cost given a particular 

quality requirement.
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HUMO Framework

• Suppose that each instance pair can be evaluated by a 

machine metric. 

- Pair similarity

- Classification metrics, e.g., match probability and 

Support Vector Machine distance.

• For simplicity of presentation, we use pair similarity as a 

machine metric example in this work. However, HUMO is 

similarly effective with other machine metrics.
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HUMO Framework

Assumption [Monotonicity of Precision*]:

For any two value intervals 𝐼𝑖 ≼ 𝐼𝑗 in [0, 1], we have 

𝑅(𝐼𝑖) ≤ 𝑅(𝐼𝑗), in which 𝑅(𝐼𝑖) denotes the precision of 

the set of instance pairs whose metric values are 

located in 𝐼𝑖.

* It was first proposed by A. Arasu, M. Gotz, et al. On active learning of record matching packages. SIGMOD 2010.

The higher (resp. lower) metric values a set of pairs have, the 

more probably they are matching pairs (resp. unmatching pairs).
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HUMO Framework

Fig.1 The HUMO framework.
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HUMO Framework

Fig.1 The HUMO framework.
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Pair
similarity
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Given a HUMO solution 𝑆, the lower 

bound of its achieved precision and 

recall can be represented by,

R𝑒𝑐𝑎𝑙𝑙𝑙 𝑆 =
𝑁𝑙

+ 𝐷+ + 𝑁𝑙
+(𝐷𝐻)

𝑁𝑙
+ 𝐷+ + 𝑁𝑙

+ 𝐷𝐻 + 𝑁𝑢
+ 𝐷−

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑙 𝑆 =
𝑁𝑙

+ 𝐷+ + 𝑁𝑙
+(𝐷𝐻)

𝑁 𝐷+ + 𝑁(𝐷𝐻)
Lower bound

Upper bound

# of matches

In this paper, we assume that the pairs in 𝐷𝐻 can 
be manually labeled accurately.

Note: In the case that human 

errors are introduced in 𝐷𝐻, 

we can adjust the estimated 

bounds accordingly. 
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HUMO Framework
Optimization Problem：

𝑎𝑟𝑔𝑚𝑖𝑛 𝐷𝐻 𝑆𝑖
𝑆𝑖

𝑠𝑢𝑏𝑗𝑒𝑡 𝑡𝑜 𝑃 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐷, 𝑆𝑖 ≥ 𝛼 ≥ 𝜃,
𝑃 𝑟𝑒𝑐𝑎𝑙𝑙 𝐷, 𝑆𝑖 ≥ 𝛽 ≥ 𝜃.

A HUMO solution.

The number of manually inspected instance pairs.

Precision level.

Recall level.

Confidence level.
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HUMO Framework

The problem of searching for the minimum size 𝐷𝐻 is 

challenging due to the fact that the ground-truth match 

proportions of 𝐷− and 𝐷+ are unknown.

Fig.1 The HUMO framework.

0 1

Pair
similarity

DHD- D+

𝑣+ 𝑣− 
: manually labeled : labeled as match: labeled as unmatchD- DH D+

14



Outline
■ Background

■ Motivation

■ The HUMO Framework

■ Optimization Approaches

• Baseline approach

• Sampling-based approach

• Hybrid approach 

■ Experiments

■ Conclusion

15



Baseline Approach

Fig.2 Incrementally moving the upper bound of 𝐷𝐻 right.

The observed 

match proportion. 
Monotonicity of Precision:

the more similar two records 

are, the more likely they refer 

to the same real-world entity. 
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Fig.3 Incrementally moving the lower bound of 𝐷𝐻 left.
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The observed match proportion. 
Monotonicity of Precision
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Baseline Approach
The precision requirement 𝜶 and recall requirement 𝜷
would be satisfied once:

𝑅(𝐼𝑖
+) ≥

𝛼 ∙ 𝐷+ − (1 − 𝛼) ∙ 𝑅(𝐷𝐻) ∙ |𝐷𝐻|

|𝐷+|

𝑅(𝐼𝑗
−) ≤

(1 − 𝛽) ∙ ( 𝐷𝐻 ∙ 𝑅 𝐷𝐻 + |𝐷+| ∙ 𝑅(𝐼𝑖
+))

𝛽 ∙ |𝐷−|

However:

- It may underestimate the match proportion of 𝐷+.

- It may overestimate the match proportion of 𝐷−. 
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Sampling-based Approach

D
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Fig.4 The demonstration of sampling-based solution.
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Sampling-based Approach

All-Sampling Solution:

• Stratified Random Sampling.

• Sample every subset  human cost consumed on 

labeling samples is usually prohibitive.

𝐷2 𝐷3 𝐷𝑘 𝐷𝑘+1 𝐷𝑚 −1 𝐷𝑚 ... ...
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Fig.5 All-sampling solution.
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Sampling-based Approach

Partial-Sampling Solution:

• Gaussian Process Regression.

• The match proportions of subsets have a joint 

Gaussian distribution.

Fig.6 Partial-sampling solution.
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Sampling-based Approach
Given the confidence level 𝜃 and the recall level 𝛽, the 

HUMO solution meets the recall requirement if:

𝛽 ≤
𝑙𝑏(𝑛 𝑖,𝑚

+ , 𝜃)

𝑢𝑏 𝑛 1,𝑖−1
+ , 𝜃 + 𝑙𝑏(𝑛 𝑖,𝑚

+ , 𝜃)

Lower bound of True Positives.

Lower bound of True Positives.Upper bound of False Negatives.

Lower bound of the estimated recall.
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Sampling-based Approach
Given the confidence level 𝜃 and the precision level 𝛼, 

the HUMO solution meets the precision requirement if:

𝛼 ≤
𝑙𝑏 𝑛 𝑖,𝑗

+ , 𝜃 + 𝑙𝑏(𝑛 𝑗+1,𝑚
+ , 𝜃)

𝑙𝑏 𝑛 𝑖,𝑗
+ , 𝜃 + 𝑛[𝑗+1,𝑚]

Lower bound of True Positives.

Lower bound of True Positives +

Upper bound of False Positives.

Lower bound of the estimated precision.
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Hybrid Approach

 The baseline approach

-- overestimates the match proportion of 𝐷−;

-- underestimates the match proportion of 𝐷+.

 The sampling-based approach

-- has to consider confidence margins in the 

estimations of 𝐷− and 𝐷+.

-- has large error margins when sample size is small.
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Hybrid Approach

 Takes advantage of both estimations and uses the 

better of both worlds in the process of bound 

computation.

 Begins with an initial solution of the partial-

sampling approach, 𝑆0, and its lower and upper 

bounds of 𝐷𝐻;

 Incrementally redefines 𝐷𝐻’s bounds using the 

better between the baseline and sampling-based 

estimates.

24



Outline

■ Background

■ Motivation

■ The HUMO Framework

■ Optimization Approaches 

■ Experiments

■ Conclusion

25



Experiments
• Datasets: DBLP−Scholar[1] (abbr. DS); Abt−Buy[2] (abbr. AB); Synthetic Datasets.

[1] https://dbs.uni-leipzig.de/file/DBLP-Scholar.zip [2] https://dbs.uni-leipzig.de/file/Abt-Buy.zip

Fig.7 Comparison of human cost on two real datasets (with confidence set to 0.9).
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Fig.8 Varying 𝜏 (steepness) of the logistic curve on the synthetic datasets.

Note: The smaller the value of 𝜏 is, the more challenging the generated ER 

workload would be.  

Baseline approach requires lesser 

manual work than Sampling-based one.
Hybrid approach can effectively use the 

better of both BASE and SAMP estimates.
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Fig.9 The percentage of manual work incurred by HUMO for 

1% absolute improvement in F1 score over 𝐴𝐶𝑇𝐿[1].

Active learning-based approaches [1], [2] have been proposed in 

order to satisfy the precision requirement for ER. 

[1] A. Arasu, M. Gotz, et al. On active learning of record matching packages. SIGMOD 2010.

[2] K. Bellare, S. Iyengar, et al. Active Sampling for entity matching. SIGKDD 2012.

HUMO can effectively improve the 

resolution quality with reasonable 

return on investment in terms of 

human cost.
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Conclusion

 A human and machine cooperation framework 

for ER.

 It enables a flexible mechanism for 

comprehensive quality control at both precision 

and recall levels.

 Three optimization approaches to minimize 

human cost given a quality requirement.
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Future Work 

 Integrate HUMO into existing crowdsourcing 

platforms.

 As a general paradigm, HUMO can be potentially 

applied to other challenging classification tasks 

requiring high quality guarantees (e.g., financial 

fraud detection and malware detection).
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