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a b s t r a c t 

In relational data, identifying the distinct attribute values that refer to the same real-world entities is 

an essential task for many data cleaning and mining applications (e.g., duplicate record detection and 

functional dependency mining). The state-of-the-art approaches for attribute value matching are mainly 

based on string similarity among attribute values. However, these approaches may not perform well in 

the cases where the specified string similarity metric is not a reliable indicator for attribute value equiv- 

alence. To alleviate such limitations, we propose a new framework for attribute value matching in rela- 

tional data. Firstly, we propose a novel probabilistic approach to reason about attribute value equivalence 

by value correlation analysis. We also propose effective methods for probabilistic equivalence reasoning 

with multiple attributes. Next, we present a unified framework, which incorporates both string similarity 

measurement and value correlation analysis by evidential reasoning. Finally, we demonstrate the effec- 

tiveness of our framework empirically on real-world datasets. Through extensive experiments, we show 

that our framework outperforms the string-based approaches by considerable margins on matching ac- 

curacy and achieves the desired efficiency. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The same real-world entities may have different representa-

ions within or across relational databases. Variations in represen-

ation can arise from differences in storage formats, typographi-

al errors, aliases and abbreviations. Determining attribute value

quivalence is an essential task for many relational data cleaning

nd mining applications [1,2] . For instance, most techniques for du-

licate record detection in relational data [3,4] divide each record

nto fields (attributes) and identify duplicate records by comparing

heir values on fields. Effective attribute value matching can there-

ore improve the accuracy of duplicate record identification. Func-

ional dependency and conditional functional dependency mining

5,6] also requires attribute value matching to reduce noise: non-

dentical but equivalent attribute values could make a valid func-

ional dependency elusive. 

As pointed out by the surveys [7,8] , most existing work on at-

ribute value matching focused on reasoning about the equivalence

etween string data. The state-of-the-art techniques are based on

easuring string similarity. A wide variety of metrics [9–12] have

een proposed for this purpose. In comparison, the methods for

apturing similarity in numeric data are rather primitive. Typically,
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he similar numbers are located by simple range queries, or treated

s strings, which are then compared using string similarity metrics.

herefore, effective matching usually requires a metric to accom-

odate the value representation variations specific to a domain.

ven though the existing string similarity metrics have been shown

o be effective in various applications, they also have the funda-

ental limitation: a metric tuned and tested on previous problems

an perform poorly on a new problem. Even though researchers

ave proposed adaptive algorithms [13,14] that can learn similarity

etrics automatically, the difficulty of using these methods can-

ot be overlooked: they require significant training data and inten-

ive human intervention. Provided with a new problem, it remains

hallenging to design both string similarity metric and thresh-

ld that can effectively capture the value representation variations

resent in the problem. 

We illustrate the limitation of the string-based approach by the

xample as shown in Table 1 . The relational records refer to re-

earch papers and each paper has four attributes, title , author ,
ournal , year , which describe the title, authors, publication

enue and publication year of the paper respectively. It can be ob-

erved that the journal values “Computers” and “Computer” look

ery similar but actually represent different publication venues. In

ontrast, the journal values “Journal on Very Large Data Bases”

nd “VLDB J” appear much less similar but actually refer to the

ame research journal. To alleviate the limitation of the string-

ased approach, we propose to reason about attribute value equiv-
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lence by value correlation analysis. Note that in Table 1 , the two

itle values, which are correlated with “Journal on Very Large

ata Bases” and “VLDB J” respectively, have a common keyword

database”, and similarly, the author values correlated with them

hare a common author “K. Ramamritham”. Generally, we observe

hat the papers published in the same journal have a higher prob-

bility to be in the same research area than those published in dif-

erent journals. Accordingly, they usually share some author names

nd their titles share some common keywords with higher prob-

bilities. As a result, correlation analysis between the journal
alues and their corresponding author and title values can

rovide with useful clues for equivalence reasoning. More specif-

cally, if two journal values are correlated with many common

uthor values and many highly similar title values, it can be

easoned that they refer to the same journal entity with a high

robability. 

Note that a simple type of correlation among attribute values

an be described by functional dependency , which specifies that the

alue of one attribute uniquely determines the value at another

ttribute. Obviously, a functional dependency can be exploited to

atch two attribute values. In the example shown in Table 1 , sup-

ose that each paper has a unique title. Accordingly, we have the

unctional dependency, 

d 1 : title → journal (1)

s a result, two attribute values on journal can be determined

o be equivalent if their corresponding records have the same value

t the attribute title . Unfortunately, in practice, it is challenging

o detect a clear-cut functional dependency in the presence of non-

dentical but equivalent attribute values, and even if it can be suc-

essfully detected, it may be of limited use in determining equiv-

lence due to lack of matching data. Again, in the example shown

n Table 1 , if each record refers to a unique paper, the functional

ependency, fd 1 , is then powerless in determining attribute value

quivalence at journal because there do not exist two papers

haring a common title. 

As illustrated by the motivating example, besides string simi-

arity measurement, value correlation analysis can also be useful

n reasoning about attribute value equivalence in relational data.

herefore, in this paper, we aim for a formal probabilistic model

or value correlation analysis, and also a unified framework that

an incorporate both string similarity measurement and value cor-

elation analysis. Our major contributions can be summarized as

ollows: 

1. We present a novel probabilistic approach to estimate the prob-

ability of attribute value equivalence by value correlation analy-

sis, which reasons about the equivalence between two attribute

values by analysing their correlation with other attribute val-

ues. 

2. We propose a unified framework for attribute value matching

in relational data. Based on both string similarity measurement

and value correlation analysis, it provides a unified equivalence

estimation by evidential reasoning. The proposed framework is

a unified one in the sense that it can be simplified into a pure

string similarity metric by setting the evidence weight of value

correlation analysis to be 0. 

3. We experimentally evaluate the performance of the proposed

framework on real-world publicly-available datasets. Our exten-

sive experiments show the effectiveness of the unified frame-

work, demonstrating that it outperforms the string-based ap-

proaches by considerable margins on matching accuracy and
achieves the desired efficiency. 
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Table 2 

Summary of symbols. 

Denotation Description 

R A relational table. 

r ∈ R A tuple from R . 

X, Y Correlated and target attribute in R . 

X, Y Domains of attribute X and Y in R . 

X [ R ] Attribute values, { r [ X ]| r ∈ R }, at X in R . 

Y [ R ] Attribute values, { r [ Y ]| r ∈ R }, at Y in R . 

x i ∈ X ( y i ∈ Y ) Values at attribute X ( Y ). 

R [ x i ] Tuples { r | r [ X] = x i } in R who have values x i at attribute X . 

X [ y j ] Attribute values { r [ X] | r [ Y ] = y j } , at X in R [ y j ]. 

Y [ x i ] Attribute values { r [ Y ] | r [ X] = x i } , at Y in R [ x i ]. 
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. Problem statement 

For simplicity, those notations and corresponding meanings

sed in this paper are shown in Table 2 . 

Note that in R , each non-null value y i at target attribute Y refers

o a real-world entities. Two attribute values are deemed to be

quivalent , denoted by y i � y j , if and only if they refer to the same

eal-world entity. For instance, in Table 1 , the values “VLDB J” and

Journal on Very Large Data Bases” are equivalent because they re-

er to the same publication venue. 

The problem of attribute value matching in relational data is to

nd the equivalences existing between values at target attribute. It

an be formally defined as follows: 

efinition 1. Given two domains of distinct relations, Y 1 ∈ R 1 and

 2 ∈ R 2 and pairs of attribute values, 〈 y i , y j 〉 ∈ Y 1 × Y 2 , the problem

f attribute value matching is to identify all the pairs 〈 y i , y j 〉 that

eferring to the same real-world entity. 

Above definition has already subsumed the special case of find-

ng pairs of equivalent attribute values within a single relation

 Y 1 = Y 2 ∧ R 1 = R 2 ). 

Attribute value matching is usually performed by pairwise com-

arisons. It ranks the pairs of attribute values by their equiva-

ence probabilities. Therefore, the core challenge is to compute

he equivalence probability between two given values at target at-

ribute. 

. Proposed framework 

In this section, we present the concept of Value Correlation Anal-

sis (VCA), and then introduce the unified framework to incorpo-

ate the String Similarity Measurement (SSM) and Value Correla-

ion Analysis (VCA). 

.1. Value correlation Analysis 

We first present a basic model in Section 3.1.1 which exploits

nly identical values and reasons about value equivalence on a

arget attribute based on another attribute. Next, in Section 3.1.2 ,

e propose an extended model that incorporates string similar-

ty metrics into the estimation of equivalence reasoning. Finally, in

ection 3.1.3 , we discuss how to reason about value equivalence on

 target attribute by multiple correlated attributes. 

We first present a basic model in Section 3.1.1 which exploits

nly identical values and reasons about value equivalence on a

arget attribute based on another attribute. Next, in Section 3.1.2 ,

e propose an extended model that incorporates string similar-

ty metrics into the process of equivalence reasoning. Finally, in

ection 3.1.3 , we discuss how to reason about value equivalence

n a target attribute based on multiple attributes. 
.1.1. Basic model 

Given two non-identical values y 1 and y 2 at the target attribute

 , the basic model uses their correlated values at another attribute

 to estimate their equivalence probability. As shown in Table 2 ,

 [ y i ] denotes the attribute values at X for the tuples in R [ y i ]. There-

ore, the attribute values (e.g. X [ y i ]) may contain duplicate attribute

alues. 

Based on the Bayes’ theorem, the probability of y 1 and y 2 being

quivalent can be computed by 

 (y 1 � y 2 ) = 

P (y 1 � y 2 | x 1 � x 2 ) 

P (x 1 � x 2 | y 1 � y 2 ) 
· P (x 1 � x 2 ) (2)

n which y 1 , y 2 ∈ Y , P ( x 1 � x 2 ) represents the probability that

 value in X [ y 1 ] is equivalent to a value in X [ y 2 ], and

 ( y 1 � y 2 | x 1 � x 2 ) and P ( x 1 � x 2 | y 1 � y 2 ) are two conditional prob-

bilities representing the correlation between two attributes X and

 with respect to y 1 and y 2 , respectively. 

For reasoning about value equivalence between y 1 and y 2 , the

wo conditional probabilities at the right-hand side of Eq. (2) can-

ot be computed directly from data. Therefore, we approximate

hem by general correlation analysis, which considers all the at-

ribute values at Y and X existing in R , as follows: 

P (y 1 � y 2 | x 1 � x 2 ) 

P (x 1 � x 2 | y 1 � y 2 ) 
≈ P (y i � y j | x i � x j ) 

P (x i � x j | y i � y j ) 
(3) 

n which P ( y i � y j | x i � x j ) represents the probability that two ran-

om tuples’ attribute values at Y are equivalent given that their at-

ribute values at X are equivalent, and analogously P ( x i � x j | y i � y j )

epresents the probability that two tuples’ attribute values at X are

quivalent given that their attribute values at Y are equivalent. 

Note that Eq. (3) essentially estimates the conditional proba-

ilities between the individual values, { y 1 , y 2 } and { x 1 , x 2 }, by

he collective conditional probability relationship existing between

 and X in R . It can be observed that while the left-hand side

f Eq. (3) can not be computed directly, the right-hand side can

sually be easily computed in practice. For instance, in the run-

ing example shown in Table 1 , suppose that Y and X corre-

pond to the journal and title attributes respectively, and two

ttribute values are equivalent if and only if they are identical.

hen, P ( y i � y j | x i � x j ) corresponds to the probability that two pa-

er records have the same journal value given that they have

he same title. Similarly, P ( x i � x j | y i � y j ) corresponds to the prob-

bility that two paper records have the same title given that they

ave the same journal value. 

Denoting the right-hand side of Eq. (3) by the general correla-

ion factor between Y and X, f ( Y, X ), we have 

f (Y, X ) = 

P (y i � y j | x i � x j ) 

P (x i � x j | y i � y j ) 
(4) 

Accordingly, the equivalence probability estimation for pair 〈 y 1 ,
 2 〉 can be represented by 

 (y 1 � y 2 ) ≈ f (Y, X ) · P (x 1 � x 2 ) (5)

Note that in Eq. (4) , the two conditional probabilities can be

epresented by 
 

P (y i � y j | x i � x j ) = 

P(y i � y j ∧ x i � x j ) 
P(x i � x j ) 

P (x i � x j | y i � y j ) = 

P(y i � y j ∧ x i � x j ) 
P(y i � y j ) 

(6) 

Therefore, by combining Eq. (4) with Eq. (6) , we can represent

he correlation factor between Y and X, f ( Y, X ), as 

f (Y, X ) = 

P (y i � y j ) 

P (x i � x j ) 
(7) 

here P ( y i � y j ) represents the equivalence probability of two ran-

om values in Y ( R ), and P ( x i � x j ) represents the equivalence prob-

bility of two random values in X ( R ). 
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Fig. 1. An illustrative examples for VCA . 

t  

l  

c  

c  

t  

l  

a  

s  

t  

e  

m

 

a  

o  

a  

U  

P  

a

P  

i  

s  

t  

X  

C

P  

w  

a

 

E

V  

 

t  

c

E  

r  
In the basic model, we assume that two attribute values are

equivalent iff they are identical. It estimates P ( x 1 � x 2 ) in Eq. (5) by

P (x 1 = x 2 ) . Similarly, it estimates the correlation factor, f ( Y, X ), by

f (Y, X ) = 

P (y i = y j ) 

P (x i = x j ) 
(8)

in which P (y i = y j ) represents the probability of two random val-

ues in Y ( R ) being identical, and P (x i = x j ) represents the proba-

bility of two random values in X ( R ) being identical. Therefore, the

equivalence probability estimation of y 1 and y 2 can be represented

by 

P (y 1 � y 2 ) ≈ f (Y, X ) · P (x 1 = x 2 ) (9)

in which P (x 1 = x 2 ) represents the probability of a random value

in X [ y 1 ] being identical to a random value in X [ y 2 ], and the value

of f ( Y, X ) is estimated by Eq. (8) . 

We observe that the computation of f ( Y, X ) as shown in

Eq. (8) requires to retrieve all the Y and X attribute values in R .

If the table R has a big size, full retrieval of its attribute values

may take long time even if feasible. This observation motivates us

to propose a scheme that can save equivalence probability estima-

tion from the computation of f ( Y, X ). The proposed scheme is called

estimation by reference , which only involves the attribute values at

X correlated with y 1 and y 2 in R, X [ y 1 ] and X [ y 2 ]. 

Estimation by Reference Given two random tuples r 1 i , r 1 j ∈ R [ y 1 ],

the probability of their attribute values at Y being equivalent can

be estimated by Eq. (5) as follows: 

P (y 1 i � y 1 j ) ≈ f (Y, X ) · P (x 1 i = x 1 j ) (10)

where y 1 i and y 1 j represent r 1 i and r 1 j ’s attribute values at Y , and

x 1 i and x 1 j represent their attribute values at X . Since y 1 i = y 1 j =
y 1 , p(y 1 i = y 1 j ) = 1 . Therefore, by combining Eqs. (5) and 10 , we

can estimate the equivalence probability between y 1 and y 2 by 

P (y 1 � y 2 ) ≈ P (x 1 = x 2 ) 

P (x 1 i = x 1 j ) 
(11)

in which P (x 1 = x 2 ) represents the probability of a random value

in X [ y 1 ] being identical to a random value in X [ y 2 ], and P (x 1 i =
x 1 j ) represents the probability of two random values in X [ y 1 ] being

identical. 

In Eq. (11) , the denominator serves as the reference to deter-

mine the equivalence between y 1 and y 2 . The closer the value

of P (x 1 = x 2 ) is to the value of P (x 1 i = x 1 j ) , the more probably

y 1 and y 2 are equivalent. Suppose that in the running example,

y 1 = “VLDB J” and y 2 = “Journal on Very Large Data Bases”. Then,

P (x 1 = x 2 ) measures the title similarity between the papers pub-

lished at “VLDB J” and those published at “Journal on Very Large

Data Bases”, and P (x 1 i = x 1 j ) captures the title similarity among

the papers published at “VLDB J”. If these two title similarity mea-

surements are very close in value, it can be expected that y 1 and

y 2 refer to the same journal entity with a high probability. 

We observe that both R [ y 1 ] and R [ y 2 ] can serve as the reference.

In a practical implementation, we suggest to choose the one with

the highest value of P (x 1 i = x 1 j ) . We can represent the equivalence

probability of y 1 and y 2 by 

P (y 1 � y 2 ) ≈ P (x 1 = x 2 ) 

max a =1 , 2 P (x ai = x a j ) 
(12)

The probabilistic metric obtained by Eq. (12) is called as Value

Correlation Analysis or VCA ( y 1 , y 2 ), which can be taken as the ratio

of matching probability across clusters and the maximal counter-

part within clusters. 

3.1.2. An extension of basic model 

The basic model as presented in Eq. (5) has limited applica-

bility because it only considers identical attribute values. Consider
he running example shown in Table 1 . To determine the equiva-

ence between two non-identical journal names, we compare their

orresponding paper titles. In case that their papers do not share

ommon titles, the basic model for VCA ( y 1 , y 2 ) would approximate

o be 0. However, it can be observed that if two papers are pub-

ished in the same journal , they may be in the same research

rea with a high probability; accordingly, their titles may be also

imilar. Therefore, it is important for VCA to capture the correla-

ion between journal and title as shown in Table 1 . To this

nd, we extend the basic model by incorporating string similarity

easurement into the estimation of VCA. 

The extended model considers not only identical values, but

lso similar values in computing the VCA in Eq. (5) . Previous work

n attribute value matching assumes that the probability of two

ttribute values being equivalent equals to their string similarity.

nder such assumption, P (x 1 = x 2 ) in Eq. (5) can be substituted by

 ( x 1 ≈ x 2 ), which represents the average of string similarity of pairs

cross X [ y 1 ] and X [ y 2 ], and can be represented by 

 (x 1 i ≈ x 2 j ) = 

∑ 

i, j 

sim (x 1 i , x 2 j ) 

| X [ y 1 ] | · | X [ y 2 ] | (13)

n which x 1 i ∈ X [ y 1 ], x 2 j ∈ X [ y 2 ] and sim ( x 1 i , x 2 j ) specifies the string

imilarity between x 1 i and x 2 j . Note that in Eq. (13) , the numera-

or exhaustively aggregates the similarity of every value pair across

 [ y 1 ] and X [ y 2 ], and the denominator represents the cardinality of

artesian product X [ y 1 ] × X [ y 2 ]. 

Similarly, P ( x ai ≈ x aj ) can be expressed by 

 (x ai ≈ x a j ) = 

∑ 

i, j 

sim (x ai , x a j ) 

| X [ y a ] | · (| X [ y a ] | − 1) / 2 

(14)

here x ai and x aj ( i 
 = j ) represent two random values from X [ y a ],

nd the denominator denotes the cardinality of value pairs. 

By extending Eq. (12) with Eq. (13) and Eq. (14) , we obtain

q. (15) . 

 CA (y 1 � y 2 ) = 

P (x 1 i ≈ x 2 j ) 

max a =1 , 2 (P (x ai ≈ x a j )) 
(15)

Analogously, VCA ( y 1 , y 2 ) in extended model, can be regarded as

he ratio of the average similarity across clusters and the maximal

ounterpart within clusters. 

xample 1. As shown in Fig. 1 , assume that there are many

esearch papers included in publication venue “VLDB ” (denoted
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y y 1 ), and “Very Large Database ” (denoted by y 2 ) respectively.

ince y 1 and y 2 refer to the same entity of Journal , X [ y 1 ], X [ y 2 ],

 [ y 1 ∪ y 2 ] were deemed to be drawn from the same underlying dis-

ribution. Should sufficient samples be available, VCA for pairs that

re equivalent, e.g., VCA ( y 1 , y 2 ), tends to approximate to 1. while

CA for pairs that are not equivalent, e.g., VCA ( y 1 , y 3 ) or VCA ( y 3 ,

 4 ), are far less than 1. 

On the complexity of VCA , we have following lemmas: 

emma 1. VCA ( y 1 , y 2 ) takes the complexity of O ((N 1 + N 2 ) 
2 ) , where

 1 and N 2 denote the cardinalities of X [ y 1 ] and X [ y 2 ] respectively. 

emma 2. VCA ( y i , y j ) over all value pairs takes the complexity of

 ( N 

2 ), where N denotes the total number of tuples and pair 〈 y i ,
 j 〉 ∈ 〈 Y × Y 〉 . 

.1.3. Reasoning by multiple attributes 

To reason about the equivalence between attribute values by

ultiple correlated attributes, a straightforward solution is to com-

ine multiple attribute values into a long field and then treat the

esulting string as a single attribute in correlation analysis. How-

ver, this approach does not differentiate the uneven importance of

ifferent attributes. Using a single string similarity metric, it can-

ot incorporate specific domain knowledge on individual attributes

nto the reasoning process either. 

To address the limitation of the straightforward solution, we

odel the problem of probabilistic equivalence reasoning as a clas-

ification problem. It classifies each value pair, y i and y j , at a target

ttribute Y into one of two labels, equivalent and inequivalent . Other

ttributes in R (except Y ) are considered as the feature sets of the

bjects (value pairs). Probabilistic reasoning by an individual at-

ribute works as a classifier, which computes for its corresponding

eature. Probabilistic reasoning by multiple attributes then corre-

ponds to the problem of building an ensemble of classifiers and

ombining their classification results. 

According to the ensemble theory [15] , the performance of an

nsemble depends on the performance of its component classifiers

nd their performance diversity. Therefore, the process of attribute

election for probabilistic reasoning consists of two steps. The first

tep of attribute filtering chooses the candidate attributes whose

orresponding classifiers can achieve good performance. The fol-

owing step of combination generation selects a combination of at-

ributes from the candidate set with the aim to boost the perfor-

ance diversity among the chosen attributes. 

Attribute Filtering Informative attributes should have two prop-

rties: 

1. high similarities for pairs drawn from the same clusters; 

2. low similarities for pairs across clusters. 

Informative attributes tend to provide strong evidence for

atching attribute values. We represent such informativeness by

onditional correlation factor (ccf). 

We first define the conditional correlation factor between at-

ribute X and Y 1 by 

c f (X, y 1 ) = 

P (x 1 i ≈ x 1 j ) 

P (x i ≈ x j ) 
(16) 

here x 1 i , x 1 j ∈ X [ y 1 ] and x i , x j ∈ X [ R ]. 

Given a target attribute Y and a candidate attribute X , we mea-

ure their conditional correlation by a weighted sum of ccf ( X, y a )

s follows: 

c f (X, Y ) = 

∑ 

y a ∈ Y 
(w a · cc f (X, y a )) (17)

n which y a denotes a distinct value in domain Y , w a denotes its

eight, which is proportional to the occurrence frequency of y a in
 [ R ]. Intuitively, high value of ccf implies that high similarities for

airs drawn from the same clusters and low similarities for pairs

rawn across clusters. 

The process of attribute selection sets a threshold θ c (e.g., θc =
 ) on the value of measured conditional correlation. An attribute X

ill be included into the candidate set if and only if its conditional

orrelation with regard to Y is no smaller than θ c , ccf ( X, Y ) ≥ θ c .

ntuitively, if the Y attribute values are independent of their corre-

ponding X values, the value of ccf ( X, Y ) tend to achieve to 1. 

Combination Generation 

We first describe how to measure performance diversity among

andidate attributes, and then present an algorithm to generate the

ttribute combination. 

According to Eq. (5) , given a candidate attribute, X 1 , the equiv-

lence probability of a pair of target Y attribute values, ( y i , y j ), as

easoned by X 1 , can be represented by 

 (y i � y j ) = f (Y, X 1 ) · P (x 1 i = x 1 j ) (18)

n which x 1 i ∈ X 1 [ y i ], x 1 j ∈ X 1 [ y j ] and P (x 1 i = x 1 j ) represents the

quivalence probability between a random value in X 1 [ y i ] and a

andom value in X 1 [ y j ]. Therefore, given two candidate attributes,

 1 and X 2 , their performance difference on reasoning about the

quivalence between y i and y j , D (y i ,y j ) 
(X 1 , X 2 ) can be represented

y 

 f (Y, X 1 ) · P (x 1 i = x 1 j ) − f (Y, X 2 ) · P (x 2 i = x 2 j ) | (19)

Additionally, denoting P (y i = y j ) and P (x i = x j ) by P ( Y ( R )) and

 ( X ( R )) respectively, we have 

f (Y, X 1 ) = 

P (Y [ R ]) 

P (X 1 [ R ]) 
(20) 

f (Y, X 2 ) = 

P (Y [ R ]) 

P (X 2 [ R ]) 
(21) 

f (X 1 , X 2 ) = 

P (X 1 [ R ]) 

P (X 2 [ R ]) 
(22)

Therefore, we have 

f (Y, X 2 ) = f (Y, X 1 ) · f (X 1 , X 2 ) (23)

ormalized by the estimation result by X 1 , the performance differ-

nce between X 1 and X 2 can be rewritten as 

 (y i ,y j ) (X 1 , X 2 ) = | 1 − f (X 1 , X 2 ) ·
P (x 2 i = x 2 j ) 

P (x 1 i = x 1 j ) 
| (24)

enoting the correlation between X 1 ( y i ) and X 2 ( y j ) by 

f (X 1 [ y i ] , X 2 [ y j ]) = 

P (x 1 i = x 1 j ) 

P (x 2 i = x 2 j ) 
(25)

e can therefore rewrite Eq. (24) as 

 (y i ,y j ) (X 1 , X 2 ) = | 1 − f (X 1 , X 2 ) 

f (X 1 [ y i ] , X 2 [ y j ]) 
| (26)

Since probabilistic reasoning aims to identify equivalent at-

ribute values, the classifier ensemble should be designed to boost

he performance diversity of the classifiers on these value pairs.

herefore, we estimate the performance diversity between X 1 and

 2 by considering all the identical value pairs at Y , ( y i , y i ). Denot-

ng D (y i ,y i ) 
(X 1 , X 2 ) by D y i (X 1 , X 2 ) , we have 

 y i (X 1 , X 2 ) = | 1 − f (X 1 , X 2 ) 

f (X 1 [ y i ] , X 2 [ y i ]) 
| (27)

herefore, we can estimate the performance diversity between X 1 

nd X 2 on all the identical Y value pairs by 

 Y (X 1 , X 2 ) ≈
∑ 

y i ∈ Y 
w i · D y i (X 1 , X 2 ) (28)



6 F. Fan et al. / Information Systems 75 (2018) 1–12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V  

 

 

 

 

 

 

 

 

 

s  

A  

m  

t  

t  

s

E

a

m

 

f

 

p  

e  

a  

D  

d  

i  

a  

p  

e  

j  

n

m

a

m

i  

b

3

 

d  

m  

p  

e

 

u  

n  

c  

s  

t

m

a

m

S  

p  

n

m

a

m

 

i

 

in which y i represents a distinct value in Y , and w i represents its

weight, whose value is proportional to the occurrence frequency of

y i in Y . 

The algorithm for generating attribute combination is sketched

in Algorithm 1 . It iteratively selects the attribute X j with the high-

Algorithm 1: Algorithm for Generating Attribute Combination. 

// S C denotes the candidate attribute set; 

// S F denotes the set of chosen attributes; 

// Y denotes the target attribute; 

S F = ∅ ; 
while ( S C 
 = ∅ ) do 

Select the attribute X j in S C with the highest conditional 

correlation factor with regard to Y , cc f (X j , Y ) ; 

if S F == ∅ then 

Insert X j into S F ; 

else 

if (there does not exist X i ∈ S F s.t. D Y (X i , X j ) < θd ) then 

Insert X j into S F ; 

Remove X j from S C ; 

est conditional correlation factor in the candidate attribute set S C .

If there exists an attribute X i in the result attribute set, S F , such

that the performance diversity between X i and X j with regard to Y

as estimated by Eq. (28) is below a threshold θd (e.g., 0.3), D Y ( X i ,

X j ) < θd , then X j is filtered out; otherwise, X j is inserted into S F . The

algorithm stops when the candidate set S C becomes empty. 

On the complexity of Algorithm 1 , we have following lemma: 

Lemma 3. Provided that performance diversities have been com-

puted beforehand, Algorithm 1 runs in O ( k 2 ) time in worse case, in

which k denotes the number of attributes in R. 

Combination Rule 

As in other applications of the ensemble theory, the probabilis-

tic estimations computed by the classifiers for individual attributes

are combined using the voting method. It first estimates the equiv-

alence probability of y 1 and y 2 by each chosen attribute and then

computes a weighted sum of the estimation results. The weight for

an attribute X i is proportional to the log of the conditional correla-

tion factor between X i and Y . Suppose that the chosen k attributes

are { X 1 , . . . , X k }. The combined probability is estimated by 

 CA (y 1 � y 2 ) = 

∑ 

1 ≤i ≤k 

w i · V CA i (y 1 � y 2 ) (29)

VCA i ( y 1 � y 2 ) X i w i X i 29 w i 

w i = 

ln (cc f (X i , Y ) ∑ 

1 ≤i ≤k ln (cc f (X i , Y )) 
(30)

ccf ( X i , Y ) X i ln ( · ) 

3.2. The unified framework 

The unified framework consists of two analytical components:

string similarity measurement and value correlation analysis. We

first describe a theory of evidence, the Dempster–Shafer theory, in

Section 3.2.1 , and then present how to use it to combine the esti-

mation results obtained at the two components in Section 3.2.2 . 

3.2.1. The Dempster–Shafer theory 

The Dempster-Shafer ( D - S ) theory [16,17] , which is a general-

ization of the Bayesian theory of subjective probability, combines

evidences from different sources and arrives at a degree of belief

that takes into account all the available evidence. 
Formally, let Z be the universal set representing all possible

tates of a system under consideration. By a function of Basic Belief

ssignment ( BBA ), the D-S theory assigns a belief mass to each ele-

ent of the power set. The mass of an element E i , m ( E i ), expresses

he proportion of all relevant and available evidence that supports

he claim that the actual state belongs to E i but to no particular

ubset of E i . The masses of elements satisfy ∑ 

 i ∈ 2 Z 
m (E i ) = 1 , 

nd 

 (∅ ) = 0 . 

If only singleton propositions are assigned belief masses, a BBA

unction reduces to a classical probability function. 

The kernel of D - S theory is Dempster’s rule, which is rooted in

robability theory and constitutes a conjunctive probabilistic infer-

nce process. It generalises Bayes’ rule and was indeed promoted

s the sole evidence combination rule to combine evidence in the

-S framework originally. The Dempster’s rule assumes that evi-

ence is fully reliable: a proposition will not be supported at all if

t is ruled out by an evidence. It adopts the orthogonal sum oper-

tion to combine evidence, which is rooted in calculating the joint

robability of independent events. With two pieces of independent

vidence represented by two BBA s m 1 and m 2 respectively, the

oint mass of a proposition E is calculated in the following man-

er: 

 1 , 2 (E) = 

∑ 

E i ∩ E j = E 
 = ∅ m 1 (E i ) · m 2 (E j ) 

1 − ∑ 

E i ∩ E j = ∅ m 1 (E i ) · m 2 (E j ) 
, 

nd 

 1 , 2 (∅ ) = 0 . 

n which 

∑ 

E i ∩ E j = ∅ m 1 (E i ) · m 2 (E j ) measures the amount of conflict

etween the two mass sets. 

.2.2. Evidential reasoning 

The unified framework assumes that the two pieces of evi-

ences for attribute value equivalence, based on string similarity

easurement and value correlation analysis respectively, are inde-

endent. It therefore uses the Dempster’s rule of combination in

vidential reasoning. 

Suppose that the equivalence probability of two attribute val-

es y 1 and y 2 estimated by string similarity measurement is de-

oted as P s ( y 1 � y 2 ); similarly, the probability estimated by value

orrelation analysis is denoted as P c ( y 1 � y 2 ). The BBA function of

tring similarity measurement assigns probability masses to single-

on propositions in the following manner: 

 s (y 1 � y 2 ) = P s (y 1 � y 2 ) , 

nd 

 s (y 1 ! � y 2 ) = 1 − P s (y 1 � y 2 ) . 

imilarly, the BBA function of value correlation analysis assigns

robability masses to singleton propositions in the following man-

er: 

 c (y 1 � y 2 ) = P c (y 1 � y 2 ) , 

nd 

 c (y 1 ! � y 2 ) = 1 − P c (y 1 � y 2 ) . 

Then, according to the Dempster’s rule, the combined probabil-

ty of y 1 and y 2 being equivalent is computed by 

p s,c (y 1 � y 2 ) = 

p s · p c 

1 − p s · (1 − p c ) − (1 − p s ) · p c 
(31)
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1 http://dblp.uni-trier.de/xml/ 
2 https://www.cs.purdue.edu/commugrate/data/citeseer/ 
3 https://people.cs.umass.edu/ ∼mccallum/data.html 
n which p s denotes p s ( y 1 � y 2 ) and p c denotes p c ( y 1 � y 2 ) 

For instance, suppose that the equivalence probabilities esti-

ated by similarity measurement and correlation analysis are 0.8

nd 0.6 respectively. Then, the combined probability is computed

y 0 . 8 ·0 . 6 
1 −0 . 8 ·0 . 4 −0 . 2 ·0 . 6 = 0 . 857 . 

According to the above formula, the unified estimation would

e 0 if any of the individual estimations is computed to be 0. To

ddress this counter-intuitive issue, we introduce evidence weights

nd translate them into simple support functions. We use the

hafer’s discounting method [16] to combine two weighted evi-

ence. Suppose p ( E i ) is the degree of belief to which a piece of

vidence points to a proposition E i . Let w be a factor that is used

o discount p ( E i ), where w (0 ≤ w ≤ 1) is interpreted as evidence

eight. The Shafer’s discounting method defines the BBA function

or an evidence as follows: 

 (E i ) = 

{ 

w · p(E i ) E i ⊂ Z, E i 
 = ∅ 
0 E i = ∅ 
1 − w E i = Z 

(32) 

What Eq. (32) means is that the degree of support for a propo-

ition is proportional to both the weight of the evidence and the

elief degree to which the evidence points to the proposition. It al-

ocates the residual support left by the evidence due to its weight,

s measured by ( 1 − w ), to Z . We have noticed that there are other

ethods [17] for weighted evidence combination. The difference is

n how to handle the residual support, as measured by 1 − w . We

ropose to use the Shafer’s discounting method because assigning

he residual support to Z is most reasonable in this setting. 

Generally, suppose that the evidence weights of similarity mea-

urement and correlation analysis are w s and w c respectively. Then,

e have 

 s (y 1 � y 2 ) = w s · p s , 

 s (y 1 ! � y 2 ) = w s · (1 − p s ) , 

nd 

 s (Z) = 1 − w s . 

imilarly, we also have 

 c (y 1 � y 2 ) = w c · p c , 

 c (y 1 ! � y 2 ) = w c · (1 − p c ) , 

nd 

 s (Z) = 1 − w c . 

herefore, the unified equivalence probability can be computed by

p s,c (y 1 � y 2 ) 

 

w s ·p s ·w c ·p c + w s ·p s ·(1 −w c )+ w c ·p c ·(1 −w s ) 
1 −w s ·p s ·w c ·(1 −p c ) −w c ·p c ·w s ·(1 −p s ) 

(33) 

Consider again the case that the equivalence probabilities esti-

ated by similarity measurement and correlation analysis are 0.8

nd 0.6 respectively; but both evidence weights are 0.5. Then, we

ave 

 s (y 1 � y 2 ) = 0 . 4 , 

 s (y 1 ! � y 2 ) = 0 . 1 , 

nd 

 s (Z) = 0 . 5 . 

e also have 

 c (y 1 � y 2 ) = 0 . 3 , 
 c (y 1 ! � y 2 ) = 0 . 2 , 

nd 

 c (Z) = 0 . 5 . 

he combined probability is therefore computed by 

 s,c (y 1 � y 2 ) = 

0 . 4 · 0 . 3 + 0 . 4 · 0 . 5 + 0 . 3 · 0 . 5 

1 − 0 . 4 · 0 . 2 − 0 . 3 · 0 . 1 

= 0 . 528 

Our experimental evaluation in Section 4.3 shows that evidence

eighting can affect the performance of the unified framework and

t performs best when the two weights are set to be equal. There-

ore, we suggest to set the weights of string similarity measure-

ent and value correlation analysis to be equal in practical im-

lementation. It is worthy to point out that the unified framework

s reduced into string similarity measurement or value correlation

nalysis if the weight of the other component is set to be 0. 

. Experimental study 

In this section, we empirically evaluate the performance of

he unified framework on real datasets. The details of these test

atasets are described as follows: 

1. DBLP. The DBLP dataset 1 contains the information on the pa-

pers published in the research venues in various areas of com-

puter science. The original dataset is clean, containing no dirty

data. For experimental purpose, we introduce dirty data by ma-

nipulating the attribute values at journal , which specifies the

venue a paper is published in. We transform the journal val-

ues by performing a series of edit operations, e.g. insertion, dele-

tion and substitution , as defined in the Edit distance [18] . We

specify the numbers of edit operations executed on journal
values by a normal distribution, N (μ, σ 2 ) , which we refer to

as the manipulation function in the rest of this section. 

2. HOTEL. The dataset contains the information of more than

138,0 0 0 hotels around the world. Similar to the case of DBLP,

we manually generate dirty data by manipulating the attribute

values at city and aircode , which specify the city a hotel

is located at and the code of its nearest airport respectively. As

on DBLP, we transform the values by performing a series of edit

operations as defined in the Edit distance. The numbers of ex-

ecuted edit operations on the city values are also specified

by a normal distribution, N (μ, σ 2 ) . The aircode values have

only three characters. Therefore, we randomly replace 1 or 2

characters at the chosen values. 

3. DBLP+CiteSeer (DLCS). Similar to DBLP, the CiteSeer dataset 2 

also records the published research papers in computer sci-

ence. An author and a publication venue may have different

representations in DBLP and CiteSeer. Our experiments aim to

match the attribute values of journal and author between

them. DBLP and CiteSeer contain around 960,0 0 0 and 45,0 0 0

tuples respectively. To facilitate repeated experimentation, we

randomly choose 20% tuples in DBLP and match them with all

the tuples in CiteSeer. 

4. CORA. The CORA dataset 3 also contains the published research

papers in computer science. Unlike the DBLP and CiteSeer

datasets, it is pretty dirty by itself. In CORA, two records may

refer to the same paper entity but their publication venues

have different representations. The dataset contains totally 1295

http://dblp.uni-trier.de/xml/
https://www.cs.purdue.edu/commugrate/data/citeseer/
https://people.cs.umass.edu/~mccallum/data.html
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Fig. 2. Precision-cutoff evaluation on DBLP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Precision-cutoff evaluation on HOTEL. 
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records and 474 attribute values at venue , which specifies pub-

lication venue. Our experiments aim to match the attribute val-

ues at venue . Since the venue values in CORA carry time in-

formation, two venues are considered to be different if they

correspond to the same conference/journal series but have dis-

tinct publication time (e.g. “the 31th IEEE International Con-

ference on Data Engineering” and “the 32nd IEEE International

Conference on Data Engineering”). 

Our experiments mainly compare the performance of four ap-

proaches, string similarity measurement (SSM), value correlation

analysis (VCA) and the unified framework (TUF). Additionally, we

compare TUF to the approach of collective entity resolution (CER)

proposed in [19] , which takes advantage of co-occurring references

to reason about entity equivalence jointly rather than indepen-

dently. Note that the effectiveness of the CER approach depends on

the presence of value co-occurrence in a record. Compared with

TUF, CER has more limited applicability in practice. For instance,

CER can only work on the author names of the bibliographic

datasets, but not on their journal attribute values; CER can’t

work on the HOTEL dataset either. In comparison, TUF can work

on both the author and journal attributes of the bibliographic

datasets, and it can also work on the HOTEL dataset. 

4.1. Comparative evaluation 

In this subsection, we first compare the performance of SSM,

VCA and TUF ( Section 4.1.1 on the DBLP dataset, Section 4.1.2 on

HOTEL and Section 4.1.3 on DLCS) and then compare TUF to CER

( Section 4.1.4 ). The unified framework sets both weights of SSM

and VCA to the default value of 0.5. On the DBLP dataset, VCA

reasons about journal by title and author . On HOTEL, VCA

reasons about city by address , and aircode by address
and city . On DLCS, VCA reasons about journal by title and

author , and author by title and journal . On CORA, VCA

reasons about venue by title and author . Reasoning over

multiple attributes are presented in Section 3.1.3 . 

4.1.1. DBLP 

To evaluate the comparative performance in the circumstances

where SSM has varying accuracies, we set the value of standard

deviation ( σ ) of the manipulation function to 2 but vary its value

of mean ( μ) from 3 to 7. Note that as the value of μ increases, the

equivalent attribute values would appear less similar. As a result,

the performance of SSM would deteriorate. 

The precisions measured over top-K (cutoff) are presented in

Fig. 2 . We present the precision results at the cutoff levels up to

100, where TUF achieves the maximal recalls. In the case of μ= 3, it

can be observed that even though SSM performs better than VCA,

TUF performs clearly better than SSM, and the performance gain

ranges from 8% to 30%. Close scrutiny reveals that VCA tends to

match the journals in the same research area, whose papers have

similar titles and share some common authors. It effectively filters
ut the journal names that appear similar but are actually in dif-

erent research areas from its top ranked list. 

It can also be observed that as the value of μ increases, the

erformance of SSM deteriorates as expected while the perfor-

ance of VCA remains stable. As a result, the performance im-

rovement achieved by TUF over SSM becomes more considerable.

s the value of μ increases, SSM becomes less reliable in deter-

ining value equivalence. The performance of VCA is instead in-

ependent of the representations of values on journal . Since TUF

everages both SSM and VCA estimation results, its performance

mprovement over SSM increases as the performance of SSM de-

eriorates. 

.1.2. HOTEL 

On the city values, the mean and standard deviation of the

anipulation function are set to be 3 and 2 respectively, μ = 3 and

= 2 . The aircode values have only three characters. Therefore,

e randomly replace 1 or 2 characters at the chosen values. 

The comparative precision-cutoff evaluation results are pre-

ented in Fig. 3 . We report the precision results up to top-10 0 0.

fter the cutoff level of 10 0 0, every approach generates few ( ≤ 5)

orrect matches. 

It can be observed that on city , even though neither SSM nor

CA achieves the precision above 50%, TUF achieves a precision

bove 90% at the cutoff level of 100. On aircode , it can be ob-

erved that SSM performs very poorly. With only three characters,

any aircode value pairs have the same string similarity but

ost of them actually represent different airports. There are a lot

f false positive matches in the top-k results. As a result, the per-

ormance of SSM remains low (around 10%) at various cutoff levels.

n comparison, by analyzing the correlated city and address
alues, VCA achieves much higher matching accuracy. It can also

e observed that TUF’s performance gains over SSM range from 5%

o 50% over city , and from 11% to 70% over aircode respec-

ively. 

.1.3. DLCS & CORA 

On the DLCS and CORA datasets, we evaluate the precision-

utoff performance of different approaches. On one hand, manually
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Fig. 4. Precision-cutoff evaluation on DLCS. 

Fig. 5. Precision-cutoff evaluation on CORA. 
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hecking the true recall values on these datasets is a daunting task.

n the other hand, if the cutoff level is set to be large enough, the

ercentage of matching pairs among those ranked after the cut-

ff level could be expected to be very small; therefore, further in-

reasing the cutoff level could only have negligible effect on the

omparative performance of different approaches. In our experi-

ents, the cutoff levels of DLCS and CORA are set to be 400 and

00 respectively. After the cutoff levels, the percentage of match-

ng pairs becomes small enough such that the comparative perfor-

ance of different approaches stabilize. The experimental results

n DLCS are shown in Fig. 4 (a) and (b). Similar to what were ob-

erved on DBLP and HOTEL, TUF consistently outperforms SSM on

atching precision. On journal , SSM performs well at the cutoff

evels of 40 and 80. It achieves the precisions of 97.5% and 87.5%

espectively. At these two cutoff levels, TUF achieves slightly better

erformance than SSM. After that, TUF outperforms SSM by con-

iderable margins: at the cutoff levels between 160 and 400, TUF

chieves around 20% improvement over SSM. 

On author , SSM does not perform as well as on journal . In
LCS, there are many author names that appear similar but actu-

lly represent different researchers. As a result, SSM returns many

alse positive matches in its top-k results. It can be observed that

ven though VCA performs worse than SSM, TUF performs much

etter than SSM. After the cutoff level of 80, TUF achieves at least

0% improvement over SSM on precision. 

The experimental results on CORA are presented in Fig. 5 . Since

any values on venue values contain the time token either ex-

licitly or implicitly, e.g. “ICDE,1998”, “31st ICDE”. Values are taken

s equivalents only if they are matching on both of publication

enue and time token (either explicit or implicit) in our experi-

ent. It can be observed that SSM performs poorly. Ranking by

SM results in many false positive matchings in the top-k pairs. In
ontrast, VCA performs well on CORA, achieving precision between

0% and 80% at various cutoff levels. By leveraging both analytical

esults of SSM and VCA, TUF achieves the best performance among

hem, and the performance gain of TUF over SSM ranges from 15%

o 45%. 

.1.4. TUF vs CER 

Since the approach of CER can only work on the attribute values

ith the co-occurrence relationship, we compare the performance

f TUF and CER on the author attribute of the single-source Cite-

eer dataset. In Citeseer, very few author names are ambiguous.

herefore, we ignore name ambiguity and suppose that identical

uthor names refer to the same person. We have implemented the

ER approach as presented in [19] . In the experiment, both CER

nd TUF used the hybrid metric, which augments a primary TF-IDF

eighting scheme for matching token sets with a secondary Jaro-

inkler scheme for matching tokens, to measure string similarity.

e have actually tested different secondary metrics for CER, and

bserved that as reported in [19] , CER performs best with the sec-

ndary metric of Jaro-Winkler. As in Section 4.1.3 , we measure the

erformance by the precisions at various cutoff levels. The compar-

tive results are presented in Fig. 6 . It can be observed that due to

imited growth space, performance gain (2%) seems small, however

UF performs consistently better than CER. 

.2. Attribute combination 

This subsection evaluates the effectiveness of attribute selection

nd estimation combination in value correlation analysis, as pre-

ented in Section 3.1.3 . On all the three datasets, the threshold of

onditional correlation factor ( θ c ) for candidate filtering is set to be

; the threshold of the performance diversity between two candi-

ate attributes ( θd ) for combination generation is set to be 0.3. The

onditional correlation factor of chosen attributes and their perfor-

ance diversity with regard to a target attribute are detailed in

able 3 . 

The evaluation results on DBLP are presented in Fig. 7 (a) and

b). On DBLP, we set the value of μ to be 5. The evaluation re-

ults for other values of μ are similar, thus omitted here. Value

orrelation analysis are executed on author , title and the com-

ination of author and title respectively. In Fig. 7 (a), it can

e observed that VCA on author performs better than VCA on

itle . Similarly, in Fig. 7 (b), it can be observed that TUF with

CA on author performs better than TUF with VCA on title .
e also observe that VCA on the attribute combination clearly out-

erforms VCA on single attributes. The comparative performance

f their corresponding TUF are similar. The evaluation results on
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Table 3 

The values of ccf ( X, Y ) on the Datasets. 

Dataset( Y ) ccf ( X 1 , Y ) ccf ( X 2 , Y ) D Y ( X 1 , X 2 ) 

DBLP( journal ) X 1 = author X 2 = title 24.70 14.84 0.48 

DLCS( journal ) X 1 = author X 2 = title 332.50 69.60 0.79 

HOTEL( aircode ) X 1 = city X 2 = address 440.14 93.15 0.81 

Fig. 7. Precision-cutoff evaluation results of attribute combination on DBLP and HO- 

TEL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Evidence weighting. 

Fig. 9. Efficiency evaluation. 
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DLCS are also presented in Fig. 7 (c) and (d). They are similar to

what were observed on DBLP. 

On HOTEL, the value of ccf ( city , aircode ) is larger than the

value of ccf ( address , aircode ). As a result, VCA on city per-

forms better than VCA on address . VCA on the attribute combi-

nation outperforms both of them. TUF with VCA on the attribute

combination also achieves the best performance. 

Our experiments show that the higher conditional correlation

factor a candidate attribute has, the better performance its corre-

sponding VCA and TUF can achieve. Moreover, the performances

of VCA and TUF are better on attribute combination than on any

single attribute. They validate the effectiveness of our approach for

value correlation analysis based on multiple attributes proposed in

Section 3.1.3 . 

4.3. Evidence weighting 

This subsection evaluates how evidence weighting can affect

the performance of the unified framework. We present the eval-

uation results on matching journal values on the DBLP dataset.

The results on other datasets are similar, thus omitted here due to
pace limit. The μ and σ values of the normal function are set

o be 5 and 2 respectively. Our experiments showed that if the

eights of SSM and VCA are set to be equal (0 < w < 1), the perfor-

ance of TUF remains stable regardless of the value of w . There-

ore, we set the weight of one component to the default value of

.5 and vary the weight of the other component from 0.1 and 0.5. 

The detailed results are presented in Fig. 8 . From Fig. 8 (a), it

an be observed that if the weight of SSM is set to be 0.5, TUF

chieves the best performance when the weight of VCA is also set

o be 0.5. TUF with any weight setting outperforms SSM and its

erformance consistently improves as the weight of VCA increases

rom 0.1 to 0.5. The experimental results for the case of varying

he SSM weight, as presented in Fig. 8 (b), are similar. TUF with

oth weights set to be the default value of 0.5 achieves the best

erformance. 

.4. Scalability evaluation 

The algorithms were evaluated on DBLP. VCA reasons about

ournal by author . In the first case, we vary data size (mea-

ured by the total number of tuples) from 20 0,0 0 0 to 80 0,0 0 0.

n the second case, the number of tuples is set to 200, to better

easure the scalability with the number of attributes, author at-

ribute is duplicated multiple times and appended to the relation

 , and the horizon-axis of Fig. 9 (b) denote number of duplicates. 

The experimental results are presented in Fig. 9 . From Fig. 9 (a),

e observe that the consumed time of VCA increases nearly

uadratically with data size (consistent with Lemma 2 ). From

ig. 9 (b), we observe that our approach scales linear with the

umber of attributes. 
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. Related work 

Attribute Values Matching is an important research problem

n data quality community, and the state-of-the-art approaches

or attribute value matching are mainly based on string similarity

mong attribute values. In general, string similarity metrics can be

roadly classified into three categories [8] : character-based, token-

ased and hybrid . The character-based metrics treat an attribute

alue as a long string. The most typical ones include edit distance ,

ffine gap cost [20] or the Jaro metric [10] . The token-based met-

ics, e.g., Jaccard Similarity, convert the strings to token sets and

onsider similarity metrics on these sets. The token-based met-

ics are usually more effective than the character-based ones in

he circumstances where word order is unimportant. Similar to the

oken-based metrics, the hybrid metrics [21,22] convert the strings

o token multisets. It also considers token similarity in measuring

he similarity between these multisets. However, as mentioned in

8] , different string similarity metrics usually have distinct suitable

pplication domains. 

Beside the string similarity measurement, we also take into

onsideration the evidential support from value correlation analy-

is , which is distinct from existing approaches: (I) Constraint-based

pproaches, e.g., [23–25] , have been widely used in data clean-

ng. However, to match attribute values, the effectiveness of such

eterministic approaches may heavily rely on the quality of con-

traints (either specified by experts or discovered by automatic al-

orithms) and the number of pairs of tuples captured by match-

ng pattern. In comparison, value correlation analysis or VCA , takes

 probabilistic approach and has much wider application scenario.

hose matching candidates failing to be captured as violations, e.g.,

Journal on Very Large Databases” vs “VLDB J” in Table 1 , can still

e further resolved by VCA . (II) Bayesian theory [26] is also widely

sed in pattern recognition and statistical inference. A significant

istinction lies in that the labels are predefined and distinct in

ayesian classification , whereas in the task of attribute value match-

ng , the equivalence between labels need to be reasoned about.

ince Bayesian-based approaches can not be used directly for the

ask of matching attribute values, we propose the novel concept of

alue correlation analysis , which is rooted in Bayesian theory and

nally reduced to the ratio of matching probability across clusters

e.g., venues) and the maximal counterpart within clusters. 

Additionally, we also list extensively some other closely related

esearch work. 

Duplicate Record Detection Duplicate record detection have been

xtensively studied in the literature [3,27] . Most effective and

idely used approaches [28–30] were built on value matching on

ndividual attribute fields. They solved the additional problem of

ow to merge the matching results on attribute fields. Obviously,

ur work on attribute value matching is complementary to them

n that determining attribute value equivalence can effectively im-

rove the accuracy of record matching. 

For efficient duplicate detection, there also exist some reason-

bly recent work on blocking techniques [31–33] , which separate

ecords into blocks likely to contain matching pairs such that un-

ecessary pair-wise comparisons can be avoided. It can be ob-

erved that our work on attribute value equivalence reasoning can

e used to improve the blocking accuracy. 

Schema Matching Schema matching [34,35] studies the prob-

em of identifying columns that represent the same concept in

wo relational tables. Effective techniques usually take a hybrid

pproach by leveraging different criteria (e.g. linguistic matching,

nstance-based matching, structured-based matching, constraint- 

ased matching and rule-based matching). The task of instance-

ased matching studied in schema matching treats all the value

nstances belonging to an attribute as a set and measures the set

imilarity by token-based metrics. Its matching techniques are sim-
lar to the techniques of string similarity measurement used for

alue equivalence reasoning in that both of them reason based on

ontents. In contrast, our work in this paper proposes to reason

bout two attribute values’ equivalence by analyzing their correla-

ion with other attribute values. On the other hand, given a schema

atching result, our work can effectively reduce equivalence am-

iguity between attribute values and thus improve the accuracy of

ecord linkage. 

Entity Name Disambiguation There also exist work on entity

ame disambiguation in relational data [19] or on Web [36,37] .

hey assumed that identical names may refer to different real-

orld entities and focused on distinguishing these names. 

In the circumstance that two identical values may refer to two

ifferent values, equivalence reasoning is very challenging because

very appearance of value should be assumed to correspond to a

istinct entity at the outset. An alternative solution is to first clus-

er distinct values into equivalent groups, which is the topic of

his paper, and then distinguish the values in the same group. It

s worthy to point out that our proposed approach can be simi-

arly used to distinguish two identical values. In the case that two

dentical values refer to two distinct entities, it can be supposed

hat they are correlated with largely different other values. The

pplication of the proposed approach to value disambiguation is

owever beyond the scope of this paper. Using Information from

xternal Knowledge Base The Web presents a huge pool of useful

nowledge, and we observe that various systems [38,39] have been

esigned for information extraction on Web. Those extracted infor-

ation can be used either by adding more columns or rows, to en-

ich the relational data, on which value correlation analysis is run. 

. Conclusion 

This paper first presents a novel probabilistic approach to rea-

on about attribute value equivalence in relational data by value

orrelation analysis. It then proposes a unified framework that can

everage both string similarity measurement and value correlation

nalysis. Finally, our extensive experiments on real datasets have

alidated the efficacy of the unified framework. 

In this paper, we have focused on equivalence reasoning on

tring values. Theoretically, the effectiveness of value correlation

nalysis does not depend on the data type of attribute values.

quipped with appropriate similarity metrics, the unified frame-

ork can also be used for equivalence reasoning on numerical val-

es. However, the existing methods for capturing similarity be-

ween numerical values are rather primitive. Therefore, the efficacy

f our proposed approach on numerical values needs to be further

nvestigated in future work. 

In our default setting, only one attribute is taken as target at-

ribute, on which value pairs will be matched. In the case that

alue equivalence should be considered on multiple attributes,

hey can be processed one by one. However, determining value

quivalence on multiple attributes simultaneously is an interesting

roblem, which may deserve much more complex model or algo-

ithm, thus can be taken as an interesting research point in future.
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