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In relational data, identifying the distinct attribute values that refer to the same real-world entities is
an essential task for many data cleaning and mining applications (e.g., duplicate record detection and
functional dependency mining). The state-of-the-art approaches for attribute value matching are mainly
based on string similarity among attribute values. However, these approaches may not perform well in
the cases where the specified string similarity metric is not a reliable indicator for attribute value equiv-
alence. To alleviate such limitations, we propose a new framework for attribute value matching in rela-
tional data. Firstly, we propose a novel probabilistic approach to reason about attribute value equivalence
by value correlation analysis. We also propose effective methods for probabilistic equivalence reasoning
with multiple attributes. Next, we present a unified framework, which incorporates both string similarity
measurement and value correlation analysis by evidential reasoning. Finally, we demonstrate the effec-
tiveness of our framework empirically on real-world datasets. Through extensive experiments, we show
that our framework outperforms the string-based approaches by considerable margins on matching ac-

curacy and achieves the desired efficiency.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The same real-world entities may have different representa-
tions within or across relational databases. Variations in represen-
tation can arise from differences in storage formats, typographi-
cal errors, aliases and abbreviations. Determining attribute value
equivalence is an essential task for many relational data cleaning
and mining applications [1,2]. For instance, most techniques for du-
plicate record detection in relational data [3,4] divide each record
into fields (attributes) and identify duplicate records by comparing
their values on fields. Effective attribute value matching can there-
fore improve the accuracy of duplicate record identification. Func-
tional dependency and conditional functional dependency mining
[5,6] also requires attribute value matching to reduce noise: non-
identical but equivalent attribute values could make a valid func-
tional dependency elusive.

As pointed out by the surveys [7,8], most existing work on at-
tribute value matching focused on reasoning about the equivalence
between string data. The state-of-the-art techniques are based on
measuring string similarity. A wide variety of metrics [9-12] have
been proposed for this purpose. In comparison, the methods for
capturing similarity in numeric data are rather primitive. Typically,

* Corresponding author.
E-mail address: fanfengfeng@mail.nwpu.edu.cn (F. Fan).

https://doi.org/10.1016/j.i5.2018.02.008
0306-4379/© 2018 Elsevier Ltd. All rights reserved.

the similar numbers are located by simple range queries, or treated
as strings, which are then compared using string similarity metrics.
Therefore, effective matching usually requires a metric to accom-
modate the value representation variations specific to a domain.
Even though the existing string similarity metrics have been shown
to be effective in various applications, they also have the funda-
mental limitation: a metric tuned and tested on previous problems
can perform poorly on a new problem. Even though researchers
have proposed adaptive algorithms [13,14] that can learn similarity
metrics automatically, the difficulty of using these methods can-
not be overlooked: they require significant training data and inten-
sive human intervention. Provided with a new problem, it remains
challenging to design both string similarity metric and thresh-
old that can effectively capture the value representation variations
present in the problem.

We illustrate the limitation of the string-based approach by the
example as shown in Table 1. The relational records refer to re-
search papers and each paper has four attributes, title, author,
journal, year, which describe the title, authors, publication
venue and publication year of the paper respectively. It can be ob-
served that the journal values “Computers” and “Computer” look
very similar but actually represent different publication venues. In
contrast, the journal values “Journal on Very Large Data Bases”
and “VLDB ]” appear much less similar but actually refer to the
same research journal. To alleviate the limitation of the string-
based approach, we propose to reason about attribute value equiv-
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Table 1

A relational table on research publications.

year

journal

author

title

2012

Computers
Computer

D. Bruneo, A. Cucinotta, A.L. Minnolo, A. Puliafito, M. Scarpa

A.M. Steane, E.G. Rieffel

Energy management in industrial plants

2000
2003
2002

Beyond bits: the future of quantum information processing

Priority assignment in real-time active databases
A taxonomy of correctness criteria in database applications

Journal on Very Large Data Bases

VLDB ]

R.M. Sivasankaran, J.A. Stankovic, D. Towsley, B. Purimetla, K. Ramamritham

K. Ramamritham, PK. Chrysanthis
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alence by value correlation analysis. Note that in Table 1, the two
title values, which are correlated with “Journal on Very Large
Data Bases” and “VLDB ]” respectively, have a common keyword
“database”, and similarly, the author values correlated with them
share a common author “K. Ramamritham”. Generally, we observe
that the papers published in the same journal have a higher prob-
ability to be in the same research area than those published in dif-
ferent journals. Accordingly, they usually share some author names
and their titles share some common keywords with higher prob-
abilities. As a result, correlation analysis between the journal
values and their corresponding author and title values can
provide with useful clues for equivalence reasoning. More specif-
ically, if two journal values are correlated with many common
author values and many highly similar title values, it can be
reasoned that they refer to the same journal entity with a high
probability.

Note that a simple type of correlation among attribute values
can be described by functional dependency, which specifies that the
value of one attribute uniquely determines the value at another
attribute. Obviously, a functional dependency can be exploited to
match two attribute values. In the example shown in Table 1, sup-
pose that each paper has a unique title. Accordingly, we have the
functional dependency,

fd; : title — journal (1)

As a result, two attribute values on journal can be determined
to be equivalent if their corresponding records have the same value
at the attribute title. Unfortunately, in practice, it is challenging
to detect a clear-cut functional dependency in the presence of non-
identical but equivalent attribute values, and even if it can be suc-
cessfully detected, it may be of limited use in determining equiv-
alence due to lack of matching data. Again, in the example shown
in Table 1, if each record refers to a unique paper, the functional
dependency, fd;, is then powerless in determining attribute value
equivalence at journal because there do not exist two papers
sharing a common title.

As illustrated by the motivating example, besides string simi-
larity measurement, value correlation analysis can also be useful
in reasoning about attribute value equivalence in relational data.
Therefore, in this paper, we aim for a formal probabilistic model
for value correlation analysis, and also a unified framework that
can incorporate both string similarity measurement and value cor-
relation analysis. Our major contributions can be summarized as
follows:

1. We present a novel probabilistic approach to estimate the prob-
ability of attribute value equivalence by value correlation analy-
sis, which reasons about the equivalence between two attribute
values by analysing their correlation with other attribute val-
ues.

2. We propose a unified framework for attribute value matching
in relational data. Based on both string similarity measurement
and value correlation analysis, it provides a unified equivalence
estimation by evidential reasoning. The proposed framework is
a unified one in the sense that it can be simplified into a pure
string similarity metric by setting the evidence weight of value
correlation analysis to be 0.

3. We experimentally evaluate the performance of the proposed
framework on real-world publicly-available datasets. Our exten-
sive experiments show the effectiveness of the unified frame-
work, demonstrating that it outperforms the string-based ap-
proaches by considerable margins on matching accuracy and
achieves the desired efficiency.
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Table 2
Summary of symbols.

Denotation Description

R A relational table.

reR A tuple from R.

XY Correlated and target attribute in R.

XY Domains of attribute X and Y in R.

X[R] Attribute values, {r[X]|reR}, at X in R.

Y[R] Attribute values, {r{Y]|reR}, at Y in R.

x;eX (y;eY) Values at attribute X (Y).

R[x;] Tuples {r|r[X] = x;} in R who have values x; at attribute X.
Xyl Attribute values {r[X]|r[Y] =y;}. at X in R[y;].
Y[x;] Attribute values {r[Y]|r[X] = x;}, at Y in R[x;].

2. Problem statement

For simplicity, those notations and corresponding meanings
used in this paper are shown in Table 2.

Note that in R, each non-null value y; at target attribute Y refers
to a real-world entities. Two attribute values are deemed to be
equivalent, denoted by y; ~y;, if and only if they refer to the same
real-world entity. For instance, in Table 1, the values “VLDB ]” and
“Journal on Very Large Data Bases” are equivalent because they re-
fer to the same publication venue.

The problem of attribute value matching in relational data is to
find the equivalences existing between values at target attribute. It
can be formally defined as follows:

Definition 1. Given two domains of distinct relations, Y; € R; and
Y; eR, and pairs of attribute values, (y;, y;) € Y1 x Y3, the problem
of attribute value matching is to identify all the pairs (y;, y;) that
referring to the same real-world entity.

Above definition has already subsumed the special case of find-
ing pairs of equivalent attribute values within a single relation
(Y] = Y2 /\Rl = R2)

Attribute value matching is usually performed by pairwise com-
parisons. It ranks the pairs of attribute values by their equiva-
lence probabilities. Therefore, the core challenge is to compute
the equivalence probability between two given values at target at-
tribute.

3. Proposed framework

In this section, we present the concept of Value Correlation Anal-
ysis (VCA), and then introduce the unified framework to incorpo-
rate the String Similarity Measurement (SSM) and Value Correla-
tion Analysis (VCA).

3.1. Value correlation Analysis

We first present a basic model in Section 3.1.1 which exploits
only identical values and reasons about value equivalence on a
target attribute based on another attribute. Next, in Section 3.1.2,
we propose an extended model that incorporates string similar-
ity metrics into the estimation of equivalence reasoning. Finally, in
Section 3.1.3, we discuss how to reason about value equivalence on
a target attribute by multiple correlated attributes.

We first present a basic model in Section 3.1.1 which exploits
only identical values and reasons about value equivalence on a
target attribute based on another attribute. Next, in Section 3.1.2,
we propose an extended model that incorporates string similar-
ity metrics into the process of equivalence reasoning. Finally, in
Section 3.1.3, we discuss how to reason about value equivalence
on a target attribute based on multiple attributes.

3.1.1. Basic model

Given two non-identical values y; and y, at the target attribute
Y, the basic model uses their correlated values at another attribute
X to estimate their equivalence probability. As shown in Table 2,
X[y;] denotes the attribute values at X for the tuples in R[y;]. There-
fore, the attribute values (e.g. X[y;]) may contain duplicate attribute
values.

Based on the Bayes’ theorem, the probability of y; and y, being
equivalent can be computed by

P(yy ~ ) = P(y1 = ya|x1 = xp)
P(x1 =~ x2|y1 = ¥2)
in which yq, y2€Y, P(x; @x,) represents the probability that
a value in X[y;] is equivalent to a value in X[y,|, and
P(yq =y,|x1 =Xp) and P(x; =X;|yq ~y,) are two conditional prob-
abilities representing the correlation between two attributes X and
Y with respect to y; and y,, respectively.

For reasoning about value equivalence between y; and y,, the
two conditional probabilities at the right-hand side of Eq. (2) can-
not be computed directly from data. Therefore, we approximate
them by general correlation analysis, which considers all the at-
tribute values at Y and X existing in R, as follows:

Py1>yalxi > %) PO =yjlxi = X))
P(x1 = X|y1 ~y2)  P(xi ~xjlyi ~y;)
in which P(y; = y;|x; = ;) represents the probability that two ran-
dom tuples’ attribute values at Y are equivalent given that their at-
tribute values at X are equivalent, and analogously P(x; = x;|y; = y;)
represents the probability that two tuples’ attribute values at X are
equivalent given that their attribute values at Y are equivalent.

Note that Eq. (3) essentially estimates the conditional proba-
bilities between the individual values, {y;, y»} and {x;, x5}, by
the collective conditional probability relationship existing between
Y and X in R. It can be observed that while the left-hand side
of Eq. (3) can not be computed directly, the right-hand side can
usually be easily computed in practice. For instance, in the run-
ning example shown in Table 1, suppose that Y and X corre-
spond to the journal and title attributes respectively, and two
attribute values are equivalent if and only if they are identical.
Then, P(y; = y;lx; ~x;) corresponds to the probability that two pa-
per records have the same journal value given that they have
the same title. Similarly, P(x; ~ x;|y; = y;) corresponds to the prob-
ability that two paper records have the same title given that they
have the same journal value.

Denoting the right-hand side of Eq. (3) by the general correla-
tion factor between Y and X, f(Y, X), we have

P(y; = yjlx; = x;)
fX) =5 —————=
P(x; ~ Xjly;i >~ y})

Accordingly, the equivalence probability estimation for pair (yi,
y,) can be represented by

P(y1 ~y2) ~ f(Y.X) - P(x; = x2) (5)

Note that in Eq. (4), the two conditional probabilities can be
represented by

P(x1 = X3) (2)

(3)

(4)

o ~ v, _ Pizyjrxicx;)
P(y; ~ yjlx; ~ xj) —W (6)

P(yi~yjnxi~x;)

P(xi ~ xjlyi > y;) = 70138;;2;].))(’

Therefore, by combining Eq. (4) with Eq. (6), we can represent
the correlation factor between Y and X, f(Y, X), as
P(y;i~y;)
(Y, X) = =L —2J2 (7)
f P(Xi ~ Xj)
where P(y; = y;) represents the equivalence probability of two ran-
dom values in Y(R), and P(x; ~ ;) represents the equivalence prob-
ability of two random values in X(R).
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In the basic model, we assume that two attribute values are
equivalent iff they are identical. It estimates P(x; ~x;) in Eq. (5) by
P(x; = xy). Similarly, it estimates the correlation factor, f{Y, X), by

P(yi=y;)
P(X,‘ =Xj)

in which P(y; =y;) represents the probability of two random val-
ues in Y(R) being identical, and P(x; = x;) represents the proba-
bility of two random values in X(R) being identical. Therefore, the
equivalence probability estimation of y; and y, can be represented
by

P(y1 ~y2) =~ f(Y.X) - P(x; = X3) (9)

in which P(x; = x,) represents the probability of a random value
in X[y;] being identical to a random value in X[y,], and the value
of f{Y, X) is estimated by Eq. (8).

We observe that the computation of fiY, X) as shown in
Eq. (8) requires to retrieve all the Y and X attribute values in R.
If the table R has a big size, full retrieval of its attribute values
may take long time even if feasible. This observation motivates us
to propose a scheme that can save equivalence probability estima-
tion from the computation of f{Y, X). The proposed scheme is called
estimation by reference, which only involves the attribute values at
X correlated with y; and y, in R, X[y;] and X[y, ].

Estimation by Reference Given two random tuples ry;, r1; € R[y1],
the probability of their attribute values at Y being equivalent can
be estimated by Eq. (5) as follows:

P(yy; = y1j) = f(Y, X) - P(x1; = Xqj) (10)

where yy; and yy; represent ry; and ry;’s attribute values at Y, and
x1; and xq; represent their attribute values at X. Since y;; =y =
Y1, P(Y1i = ¥1j) = 1. Therefore, by combining Egs. (5) and 10, we
can estimate the equivalence probability between y; and y, by

P(x1 = x3)
P(x1; = X1) (i

f.X) = (8)

P(y1 =y2) =~

in which P(x; = x,) represents the probability of a random value
in X[y;] being identical to a random value in X[y,], and P(xq; =
x1j) represents the probability of two random values in X[y ] being
identical.

In Eq. (11), the denominator serves as the reference to deter-
mine the equivalence between y; and y,. The closer the value
of P(x; =X;) is to the value of P(xy; =x;;), the more probably
y1 and y, are equivalent. Suppose that in the running example,
y1="VLDB ]J” and y,="Journal on Very Large Data Bases”. Then,
P(xq = x) measures the title similarity between the papers pub-
lished at “VLDB ]” and those published at “Journal on Very Large
Data Bases”, and P(xq; =x;;) captures the title similarity among
the papers published at “VLDB J”. If these two title similarity mea-
surements are very close in value, it can be expected that y; and
y, refer to the same journal entity with a high probability.

We observe that both R[y] and R[y,] can serve as the reference.
In a practical implementation, we suggest to choose the one with
the highest value of P(x;; = x;;). We can represent the equivalence
probability of y; and y, by

P(x1 =X2)

P(y; ~y;) ~
01 =2) MaXg_12 P(Xgi = Xqj)

(12)

The probabilistic metric obtained by Eq. (12) is called as Value
Correlation Analysis or VCA(y4, y»), which can be taken as the ratio
of matching probability across clusters and the maximal counter-
part within clusters.

3.1.2. An extension of basic model
The basic model as presented in Eq. (5) has limited applica-
bility because it only considers identical attribute values. Consider

o Xly,]
[&8)
\ o Xly,]
iy 'O%Cf);: . * Xyl
o C:?..o . ® X[y4]
% e 3
® o O e o, o
¢ 0%l e > e
e’ s

Fig. 1. An illustrative examples for VCA.

the running example shown in Table 1. To determine the equiva-
lence between two non-identical journal names, we compare their
corresponding paper titles. In case that their papers do not share
common titles, the basic model for VCA(y4, y,) would approximate
to be 0. However, it can be observed that if two papers are pub-
lished in the same journal, they may be in the same research
area with a high probability; accordingly, their titles may be also
similar. Therefore, it is important for VCA to capture the correla-
tion between journal and title as shown in Table 1. To this
end, we extend the basic model by incorporating string similarity
measurement into the estimation of VCA.

The extended model considers not only identical values, but
also similar values in computing the VCA in Eq. (5). Previous work
on attribute value matching assumes that the probability of two
attribute values being equivalent equals to their string similarity.
Under such assumption, P(x; = x,) in Eq. (5) can be substituted by
P(xq ~x,), which represents the average of string similarity of pairs
across X[y;] and X[y, ], and can be represented by

ZSim(XlivXZj)
P % X)) = e (13)
T Xl X2l
in which xy; € X[y1], x; € X[y,] and sim(xy;, x,;) specifies the string
similarity between x;; and x;. Note that in Eq. (13), the numera-
tor exhaustively aggregates the similarity of every value pair across
X|y1] and X[y,], and the denominator represents the cardinality of
Cartesian product X[y;] x X[y, ].
Similarly, P(x,; ~x,;) can be expressed by

ZSim(xahxaj)
i.j
(14)
IX[yall - (IX[yall = 1)/2
where x,; and x,; (i#j) represent two random values from X[yq],
and the denominator denotes the cardinality of value pairs.
By extending Eq. (12) with Eq. (13) and Eq. (14), we obtain
Eq. (15).

P(Xai %Xaj) =

P(xq; ~ X3j)
maxg—1,2(P(Xgi & Xqj))

VCA(y1 ~ ;) = (15)

Analogously, VCA(y1, y») in extended model, can be regarded as
the ratio of the average similarity across clusters and the maximal
counterpart within clusters.

Example 1. As shown in Fig. 1, assume that there are many
research papers included in publication venue “VLDB” (denoted
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by yq), and “Very Large Database” (denoted by y,) respectively.
Since y; and y, refer to the same entity of Journal, X[y{], X[y2],
X[y1 Uy,] were deemed to be drawn from the same underlying dis-
tribution. Should sufficient samples be available, VCA for pairs that
are equivalent, e.g., VCA(yq, y»), tends to approximate to 1. while
VCA for pairs that are not equivalent, e.g., VCA(yq, y3) or VCA(ys,
Y4), are far less than 1.

On the complexity of VCA, we have following lemmas:

Lemma 1. VCA(y;, y) takes the complexity of O((N; + N»)?), where
N; and N, denote the cardinalities of X[y,] and X[y, | respectively.

Lemma 2. VCA(y;, y;) over all value pairs takes the complexity of
O(N?), where N denotes the total number of tuples and pair (y;,
yj) € (Y X Y).

3.1.3. Reasoning by multiple attributes

To reason about the equivalence between attribute values by
multiple correlated attributes, a straightforward solution is to com-
bine multiple attribute values into a long field and then treat the
resulting string as a single attribute in correlation analysis. How-
ever, this approach does not differentiate the uneven importance of
different attributes. Using a single string similarity metric, it can-
not incorporate specific domain knowledge on individual attributes
into the reasoning process either.

To address the limitation of the straightforward solution, we
model the problem of probabilistic equivalence reasoning as a clas-
sification problem. It classifies each value pair, y; and y;, at a target
attribute Y into one of two labels, equivalent and inequivalent. Other
attributes in R (except Y) are considered as the feature sets of the
objects (value pairs). Probabilistic reasoning by an individual at-
tribute works as a classifier, which computes for its corresponding
feature. Probabilistic reasoning by multiple attributes then corre-
sponds to the problem of building an ensemble of classifiers and
combining their classification results.

According to the ensemble theory [15], the performance of an
ensemble depends on the performance of its component classifiers
and their performance diversity. Therefore, the process of attribute
selection for probabilistic reasoning consists of two steps. The first
step of attribute filtering chooses the candidate attributes whose
corresponding classifiers can achieve good performance. The fol-
lowing step of combination generation selects a combination of at-
tributes from the candidate set with the aim to boost the perfor-
mance diversity among the chosen attributes.

Attribute Filtering Informative attributes should have two prop-
erties:

1. high similarities for pairs drawn from the same clusters;
2. low similarities for pairs across clusters.

Informative attributes tend to provide strong evidence for
matching attribute values. We represent such informativeness by
conditional correlation factor (ccf).

We first define the conditional correlation factor between at-
tribute X and Y; by

P(x1; =~ X1j)

ccfXy1) = 50—+ (16)
P(x; ~ x;)
where xy;, x1j € X[y1] and x;, x; € X[R].
Given a target attribute Y and a candidate attribute X, we mea-
sure their conditional correlation by a weighted sum of ccf(X, yq)

as follows:
ccfX.Y) = (Wa-ccf(X.ya)) (17)
Ya€Y

in which y, denotes a distinct value in domain Y, w, denotes its
weight, which is proportional to the occurrence frequency of yq in

Y[R]. Intuitively, high value of ccf implies that high similarities for
pairs drawn from the same clusters and low similarities for pairs
drawn across clusters.

The process of attribute selection sets a threshold 6. (e.g., 6. =
5) on the value of measured conditional correlation. An attribute X
will be included into the candidate set if and only if its conditional
correlation with regard to Y is no smaller than 6., ccfiX, Y)>6..
Intuitively, if the Y attribute values are independent of their corre-
sponding X values, the value of ccf(X, Y) tend to achieve to 1.

Combination Generation

We first describe how to measure performance diversity among
candidate attributes, and then present an algorithm to generate the
attribute combination.

According to Eq. (5), given a candidate attribute, X1, the equiv-
alence probability of a pair of target Y attribute values, (y;, y;), as
reasoned by Xj, can be represented by

P~ yp) = [V, X) - Py = ) -

in which x3;€Xq[y;], x;€X;[y;] and P(x;; =x;;) represents the
equivalence probability between a random value in X;[y;] and a
random value in X;[y;]. Therefore, given two candidate attributes,
X1 and X,, their performance difference on reasoning about the
equivalence between y; and y;, D(yi'yj)(Xl,Xz) can be represented

by
[f(Y,X1) - P(xX1; = X1j) — f(Y, X3) - P(xp; = X)) | (19)

Additionally, denoting P(y; =y;) and P(x; =x;) by P(Y(R)) and
P(X(R)) respectively, we have

P(Y[R])

fY, X)) = POGIR]) (20)
_ P(Y[R]
S %) = pre D (21)
P(X1[R])
X1, %) = POSIR]) (22)
Therefore, we have
FOV.X) = f(Y.X1) - (X1, X2) (23)

Normalized by the estimation result by X;, the performance differ-
ence between X; and X, can be rewritten as

P(xy; = X2j)
Dy, y) X1, X2) = |1—f(X1,X2)'m| (24)
Denoting the correlation between X;(y;) and X,(y;) by
P(x1; = X1;)

Xyl Xalyj]) = G2 25
SOl Xaly)h = e =2 (25)
we can therefore rewrite Eq. (24) as

Xi, X
Dy, y) X1, X2) = |1 - S, %) (26)

f&alyil, Xaly;D

Since probabilistic reasoning aims to identify equivalent at-
tribute values, the classifier ensemble should be designed to boost
the performance diversity of the classifiers on these value pairs.
Therefore, we estimate the performance diversity between X; and
X, by considering all the identical value pairs at Y, (y;, y;). Denot-
ing D(yl_yyi)(Xl,Xz) by Dy, (Xq,X3), we have

fX1.X2)

FXalyil. XalyiD

Therefore, we can estimate the performance diversity between X,
and X, on all the identical Y value pairs by

Dy (X1, X2) ~ Y w;- Dy, (X1, Xz) (28)
yieY

Dy, (X1, Xp) = |1 — (27)
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in which y; represents a distinct value in Y, and w; represents its
weight, whose value is proportional to the occurrence frequency of
y;inY.

The algorithm for generating attribute combination is sketched
in Algorithm 1 . It iteratively selects the attribute X; with the high-

Algorithm 1: Algorithm for Generating Attribute Combination.

|| Sc denotes the candidate attribute set;
|| Sk denotes the set of chosen attributes;
/] 'Y denotes the target attribute;
SF =0
while (S¢ # @) do
Select the attribute X; in Sc with the highest conditional
correlation factor with regard to Y, ccf(X;,Y);
if SF == (¢ then
| Insert X; into Sg;
else

if (there does not exist X; € Sg s.t. Dy (X;, X;) < 6,) then
| Insert X; into S;

| Remove X; from Sc;

est conditional correlation factor in the candidate attribute set Sc.
If there exists an attribute X; in the result attribute set, Sg, such
that the performance diversity between X; and X; with regard to Y
as estimated by Eq. (28) is below a threshold 6, (e.g., 0.3), Dy(X;,
Xj) <04, then X; is filtered out; otherwise, X; is inserted into Sg. The
algorithm stops when the candidate set Sc becomes empty.

On the complexity of Algorithm 1, we have following lemma:

Lemma 3. Provided that performance diversities have been com-
puted beforehand, Algorithm 1 runs in O(k?) time in worse case, in
which k denotes the number of attributes in R.

Combination Rule

As in other applications of the ensemble theory, the probabilis-
tic estimations computed by the classifiers for individual attributes
are combined using the voting method. It first estimates the equiv-
alence probability of y; and y, by each chosen attribute and then
computes a weighted sum of the estimation results. The weight for
an attribute X; is proportional to the log of the conditional correla-
tion factor between X; and Y. Suppose that the chosen k attributes
are {Xq, ..., X;}. The combined probability is estimated by

VCA(y1 ~y2) = Y w;-VCAi(y1 ~y2) (29)
1<i<k

VCA(y1 =y2) X; w; X; 29w;

_ In(ccf(Xi,Y)

B Z]gigk IH(CCf(X,', Y))

ccfiX;, Y) Xi In(-)

3.2. The unified framework

The unified framework consists of two analytical components:
string similarity measurement and value correlation analysis. We
first describe a theory of evidence, the Dempster-Shafer theory, in
Section 3.2.1, and then present how to use it to combine the esti-
mation results obtained at the two components in Section 3.2.2.

3.2.1. The Dempster-Shafer theory

The Dempster-Shafer (D-S) theory [16,17], which is a general-
ization of the Bayesian theory of subjective probability, combines
evidences from different sources and arrives at a degree of belief
that takes into account all the available evidence.

Formally, let Z be the universal set representing all possible
states of a system under consideration. By a function of Basic Belief
Assignment (BBA), the D-S theory assigns a belief mass to each ele-
ment of the power set. The mass of an element E;, m(E;), expresses
the proportion of all relevant and available evidence that supports
the claim that the actual state belongs to E; but to no particular
subset of E;. The masses of elements satisfy

> m(E) =1,

Eie2Z
and
m(%) = 0.

If only singleton propositions are assigned belief masses, a BBA
function reduces to a classical probability function.

The kernel of D-S theory is Dempster’s rule, which is rooted in
probability theory and constitutes a conjunctive probabilistic infer-
ence process. It generalises Bayes’ rule and was indeed promoted
as the sole evidence combination rule to combine evidence in the
D-S framework originally. The Dempster’s rule assumes that evi-
dence is fully reliable: a proposition will not be supported at all if
it is ruled out by an evidence. It adopts the orthogonal sum oper-
ation to combine evidence, which is rooted in calculating the joint
probability of independent events. With two pieces of independent
evidence represented by two BBAs m; and m, respectively, the
joint mass of a proposition E is calculated in the following man-
ner:

2k =0 T (E) - m2 (Ej)

mq2(E) = ,
12(E) 1= 3 g, —g M (Ei) - ma(Ej)

and

m1_2((0) =0.

in which ZEI,QE},:(,, my (E;) - my(Ej) measures the amount of conflict
between the two mass sets.

3.2.2. Evidential reasoning

The unified framework assumes that the two pieces of evi-
dences for attribute value equivalence, based on string similarity
measurement and value correlation analysis respectively, are inde-
pendent. It therefore uses the Dempster’s rule of combination in
evidential reasoning.

Suppose that the equivalence probability of two attribute val-
ues y; and y, estimated by string similarity measurement is de-
noted as Ps(y; =5); similarly, the probability estimated by value
correlation analysis is denoted as P.(y; ~y,). The BBA function of
string similarity measurement assigns probability masses to single-
ton propositions in the following manner:

ms(y1 ~y2) = B(y1 = y2),

and

ms(y1! =y2) =1-FQy1 =y2).

Similarly, the BBA function of value correlation analysis assigns
probability masses to singleton propositions in the following man-
ner:

me(y1 = y2) = P(y1 = y2).
and
me(y1! ~yz2) =1-P(y1 >~ y2).

Then, according to the Dempster’s rule, the combined probabil-
ity of y; and y, being equivalent is computed by

Ds - Pc
T p (A=p)—(=p) pe (1)

Psc(Y1=Y2) =
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in which ps denotes ps(y; ~y,) and p. denotes p.(y; =y,)

For instance, suppose that the equivalence probabilities esti-
mated by similarity measurement and correlation analysis are 0.8
and 0.6 respectively. Then, the combined probability is computed
by oiee5og = 0.857.

According to the above formula, the unified estimation would
be 0 if any of the individual estimations is computed to be 0. To
address this counter-intuitive issue, we introduce evidence weights
and translate them into simple support functions. We use the
Shafer’s discounting method [16] to combine two weighted evi-
dence. Suppose p(E;) is the degree of belief to which a piece of
evidence points to a proposition E;. Let w be a factor that is used
to discount p(E;), where w (0<w<1) is interpreted as evidence
weight. The Shafer’s discounting method defines the BBA function
for an evidence as follows:

w-p(E) ECZE#0
l-w  E=2z

What Eq. (32) means is that the degree of support for a propo-
sition is proportional to both the weight of the evidence and the
belief degree to which the evidence points to the proposition. It al-
locates the residual support left by the evidence due to its weight,
as measured by (1 — w), to Z. We have noticed that there are other
methods [17] for weighted evidence combination. The difference is
on how to handle the residual support, as measured by 1 —w. We
propose to use the Shafer’s discounting method because assigning
the residual support to Z is most reasonable in this setting.

Generally, suppose that the evidence weights of similarity mea-
surement and correlation analysis are ws and w, respectively. Then,
we have

ms(y1 =~ ¥2) = Ws - Ds,

ms(y1! =y2) = ws - (1 - ps),
and

ms(Z) =1 —ws.

Similarly, we also have

me(Y1 = y2) = We - Pe,

me(Y1! =y2) = we- (1= pe),

and

ms(Z) =1—-we.

Therefore, the unified equivalence probability can be computed by
Psc(Y1 = ¥2)

Ws-Ps-We-Pe+Ws-Ps- (1-We) +We-Pe-(1-Ws) (33)
1-Ws-ps-We-(1—pe) —We-pe-Ws-(1-ps)

Consider again the case that the equivalence probabilities esti-
mated by similarity measurement and correlation analysis are 0.8
and 0.6 respectively; but both evidence weights are 0.5. Then, we
have

ms(y1 ~y2) = 0.4,

ms(y1! ~y2) = 0.1,
and

ms(Z) = 0.5.

We also have

me(y1 ~y,) =0.3,

me(y1! >=y2) =02,

and

me(Z) = 0.5.

The combined probability is therefore computed by

04-03+04-05+03-0.5
1-04-02-03-0.1

Our experimental evaluation in Section 4.3 shows that evidence
weighting can affect the performance of the unified framework and
it performs best when the two weights are set to be equal. There-
fore, we suggest to set the weights of string similarity measure-
ment and value correlation analysis to be equal in practical im-
plementation. It is worthy to point out that the unified framework
is reduced into string similarity measurement or value correlation
analysis if the weight of the other component is set to be 0.

=0.528

Msc(y1 = y2) =

4. Experimental study

In this section, we empirically evaluate the performance of
the unified framework on real datasets. The details of these test
datasets are described as follows:

1. DBLP. The DBLP dataset' contains the information on the pa-
pers published in the research venues in various areas of com-
puter science. The original dataset is clean, containing no dirty
data. For experimental purpose, we introduce dirty data by ma-
nipulating the attribute values at journal, which specifies the
venue a paper is published in. We transform the journal val-
ues by performing a series of edit operations, e.g. insertion, dele-
tion and substitution, as defined in the Edit distance[18]. We
specify the numbers of edit operations executed on journal
values by a normal distribution, A (i, 02), which we refer to
as the manipulation function in the rest of this section.

2. HOTEL. The dataset contains the information of more than
138,000 hotels around the world. Similar to the case of DBLP,
we manually generate dirty data by manipulating the attribute
values at city and aircode, which specify the city a hotel
is located at and the code of its nearest airport respectively. As
on DBLP, we transform the values by performing a series of edit
operations as defined in the Edit distance. The numbers of ex-
ecuted edit operations on the city values are also specified
by a normal distribution, A (1, 0'2). The aircode values have
only three characters. Therefore, we randomly replace 1 or 2
characters at the chosen values.

3. DBLP+CiteSeer (DLCS). Similar to DBLP, the CiteSeer dataset?
also records the published research papers in computer sci-
ence. An author and a publication venue may have different
representations in DBLP and CiteSeer. Our experiments aim to
match the attribute values of journal and author between
them. DBLP and CiteSeer contain around 960,000 and 45,000
tuples respectively. To facilitate repeated experimentation, we
randomly choose 20% tuples in DBLP and match them with all
the tuples in CiteSeer.

4. CORA. The CORA dataset® also contains the published research
papers in computer science. Unlike the DBLP and CiteSeer
datasets, it is pretty dirty by itself. In CORA, two records may
refer to the same paper entity but their publication venues
have different representations. The dataset contains totally 1295

1 http://dblp.uni-trier.de/xml/
2 https://www.cs.purdue.edu/commugrate/data/citeseer/
3 https://people.cs.umass.edu/~mccallum/data.html
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Fig. 2. Precision-cutoff evaluation on DBLP.

records and 474 attribute values at venue, which specifies pub-
lication venue. Our experiments aim to match the attribute val-
ues at venue. Since the venue values in CORA carry time in-
formation, two venues are considered to be different if they
correspond to the same conference/journal series but have dis-
tinct publication time (e.g. “the 31th IEEE International Con-
ference on Data Engineering” and “the 32nd IEEE International
Conference on Data Engineering”).

Our experiments mainly compare the performance of four ap-
proaches, string similarity measurement (SSM), value correlation
analysis (VCA) and the unified framework (TUF). Additionally, we
compare TUF to the approach of collective entity resolution (CER)
proposed in [19], which takes advantage of co-occurring references
to reason about entity equivalence jointly rather than indepen-
dently. Note that the effectiveness of the CER approach depends on
the presence of value co-occurrence in a record. Compared with
TUF, CER has more limited applicability in practice. For instance,
CER can only work on the author names of the bibliographic
datasets, but not on their journal attribute values; CER can’t
work on the HOTEL dataset either. In comparison, TUF can work
on both the author and journal attributes of the bibliographic
datasets, and it can also work on the HOTEL dataset.

4.1. Comparative evaluation

In this subsection, we first compare the performance of SSM,
VCA and TUF (Section 4.1.1 on the DBLP dataset, Section 4.1.2 on
HOTEL and Section 4.1.3 on DLCS) and then compare TUF to CER
(Section 4.1.4). The unified framework sets both weights of SSM
and VCA to the default value of 0.5. On the DBLP dataset, VCA
reasons about journal by title and author. On HOTEL, VCA
reasons about city by address, and aircode by address
and city. On DLCS, VCA reasons about journal by title and
author, and author by title and jourmal. On CORA, VCA
reasons about venue by title and author. Reasoning over
multiple attributes are presented in Section 3.1.3.

4.1.1. DBLP

To evaluate the comparative performance in the circumstances
where SSM has varying accuracies, we set the value of standard
deviation (o) of the manipulation function to 2 but vary its value
of mean (u) from 3 to 7. Note that as the value of y increases, the
equivalent attribute values would appear less similar. As a result,
the performance of SSM would deteriorate.

The precisions measured over top-K (cutoff) are presented in
Fig. 2. We present the precision results at the cutoff levels up to
100, where TUF achieves the maximal recalls. In the case of u=3, it
can be observed that even though SSM performs better than VCA,
TUF performs clearly better than SSM, and the performance gain
ranges from 8% to 30%. Close scrutiny reveals that VCA tends to
match the journals in the same research area, whose papers have
similar titles and share some common authors. It effectively filters
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Fig. 3. Precision-cutoff evaluation on HOTEL.

out the journal names that appear similar but are actually in dif-
ferent research areas from its top ranked list.

It can also be observed that as the value of p increases, the
performance of SSM deteriorates as expected while the perfor-
mance of VCA remains stable. As a result, the performance im-
provement achieved by TUF over SSM becomes more considerable.
As the value of u increases, SSM becomes less reliable in deter-
mining value equivalence. The performance of VCA is instead in-
dependent of the representations of values on journal. Since TUF
leverages both SSM and VCA estimation results, its performance
improvement over SSM increases as the performance of SSM de-
teriorates.

4.1.2. HOTEL

On the city values, the mean and standard deviation of the
manipulation function are set to be 3 and 2 respectively, 4 = 3 and
o = 2. The aircode values have only three characters. Therefore,
we randomly replace 1 or 2 characters at the chosen values.

The comparative precision-cutoff evaluation results are pre-
sented in Fig. 3. We report the precision results up to top-1000.
After the cutoff level of 1000, every approach generates few ( <5)
correct matches.

It can be observed that on city, even though neither SSM nor
VCA achieves the precision above 50%, TUF achieves a precision
above 90% at the cutoff level of 100. On aircode, it can be ob-
served that SSM performs very poorly. With only three characters,
many aircode value pairs have the same string similarity but
most of them actually represent different airports. There are a lot
of false positive matches in the top-k results. As a result, the per-
formance of SSM remains low (around 10%) at various cutoff levels.
In comparison, by analyzing the correlated city and address
values, VCA achieves much higher matching accuracy. It can also
be observed that TUF's performance gains over SSM range from 5%
to 50% over city, and from 11% to 70% over aircode respec-
tively.

4.1.3. DLCS & CORA
On the DLCS and CORA datasets, we evaluate the precision-
cutoff performance of different approaches. On one hand, manually
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checking the true recall values on these datasets is a daunting task.
On the other hand, if the cutoff level is set to be large enough, the
percentage of matching pairs among those ranked after the cut-
off level could be expected to be very small; therefore, further in-
creasing the cutoff level could only have negligible effect on the
comparative performance of different approaches. In our experi-
ments, the cutoff levels of DLCS and CORA are set to be 400 and
200 respectively. After the cutoff levels, the percentage of match-
ing pairs becomes small enough such that the comparative perfor-
mance of different approaches stabilize. The experimental results
on DLCS are shown in Fig. 4 (a) and (b). Similar to what were ob-
served on DBLP and HOTEL, TUF consistently outperforms SSM on
matching precision. On journal, SSM performs well at the cutoff
levels of 40 and 80. It achieves the precisions of 97.5% and 87.5%
respectively. At these two cutoff levels, TUF achieves slightly better
performance than SSM. After that, TUF outperforms SSM by con-
siderable margins: at the cutoff levels between 160 and 400, TUF
achieves around 20% improvement over SSM.

On author, SSM does not perform as well as on journal. In
DLCS, there are many author names that appear similar but actu-
ally represent different researchers. As a result, SSM returns many
false positive matches in its top-k results. It can be observed that
even though VCA performs worse than SSM, TUF performs much
better than SSM. After the cutoff level of 80, TUF achieves at least
30% improvement over SSM on precision.

The experimental results on CORA are presented in Fig. 5. Since
many values on venue values contain the time token either ex-
plicitly or implicitly, e.g. “ICDE,1998", “31st ICDE”. Values are taken
as equivalents only if they are matching on both of publication
venue and time token (either explicit or implicit) in our experi-
ment. It can be observed that SSM performs poorly. Ranking by
SSM results in many false positive matchings in the top-k pairs. In
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Fig. 6. TUF vs CER on Citeseer.

contrast, VCA performs well on CORA, achieving precision between
70% and 80% at various cutoff levels. By leveraging both analytical
results of SSM and VCA, TUF achieves the best performance among
them, and the performance gain of TUF over SSM ranges from 15%
to 45%.

4.14. TUF vs CER

Since the approach of CER can only work on the attribute values
with the co-occurrence relationship, we compare the performance
of TUF and CER on the author attribute of the single-source Cite-
seer dataset. In Citeseer, very few author names are ambiguous.
Therefore, we ignore name ambiguity and suppose that identical
author names refer to the same person. We have implemented the
CER approach as presented in [19]. In the experiment, both CER
and TUF used the hybrid metric, which augments a primary TF-IDF
weighting scheme for matching token sets with a secondary Jaro-
Winkler scheme for matching tokens, to measure string similarity.
We have actually tested different secondary metrics for CER, and
observed that as reported in [19], CER performs best with the sec-
ondary metric of Jaro-Winkler. As in Section 4.1.3, we measure the
performance by the precisions at various cutoff levels. The compar-
ative results are presented in Fig. 6. It can be observed that due to
limited growth space, performance gain (2%) seems small, however
TUF performs consistently better than CER.

4.2. Attribute combination

This subsection evaluates the effectiveness of attribute selection
and estimation combination in value correlation analysis, as pre-
sented in Section 3.1.3. On all the three datasets, the threshold of
conditional correlation factor (6.) for candidate filtering is set to be
5; the threshold of the performance diversity between two candi-
date attributes (6 ;) for combination generation is set to be 0.3. The
conditional correlation factor of chosen attributes and their perfor-
mance diversity with regard to a target attribute are detailed in
Table 3.

The evaluation results on DBLP are presented in Fig. 7 (a) and
(b). On DBLP, we set the value of wu to be 5. The evaluation re-
sults for other values of w are similar, thus omitted here. Value
correlation analysis are executed on author, title and the com-
bination of author and title respectively. In Fig. 7 (a), it can
be observed that VCA on author performs better than VCA on
title. Similarly, in Fig. 7 (b), it can be observed that TUF with
VCA on author performs better than TUF with VCA on title.
We also observe that VCA on the attribute combination clearly out-
performs VCA on single attributes. The comparative performance
of their corresponding TUF are similar. The evaluation results on
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Table 3
The values of ccf(X, Y) on the Datasets.

Dataset(Y)

DBLP(journal) X;=author X,=title
DLCS(journal) X;=author X,=title
HOTEL(aircode) X;=city X,=address
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Fig. 7. Precision-cutoff evaluation results of attribute combination on DBLP and HO-
TEL.

DLCS are also presented in Fig. 7 (¢) and (d). They are similar to
what were observed on DBLP.

On HOTEL, the value of ccficity, aircode) is larger than the
value of ccfladdress,aircode). As a result, VCA on city per-
forms better than VCA on address. VCA on the attribute combi-
nation outperforms both of them. TUF with VCA on the attribute
combination also achieves the best performance.

Our experiments show that the higher conditional correlation
factor a candidate attribute has, the better performance its corre-
sponding VCA and TUF can achieve. Moreover, the performances
of VCA and TUF are better on attribute combination than on any
single attribute. They validate the effectiveness of our approach for
value correlation analysis based on multiple attributes proposed in
Section 3.1.3.

4.3. Evidence weighting

This subsection evaluates how evidence weighting can affect
the performance of the unified framework. We present the eval-
uation results on matching journal values on the DBLP dataset.
The results on other datasets are similar, thus omitted here due to
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space limit. The u and o values of the normal function are set
to be 5 and 2 respectively. Our experiments showed that if the
weights of SSM and VCA are set to be equal (0 <w < 1), the perfor-
mance of TUF remains stable regardless of the value of w. There-
fore, we set the weight of one component to the default value of
0.5 and vary the weight of the other component from 0.1 and 0.5.

The detailed results are presented in Fig. 8. From Fig. 8 (a), it
can be observed that if the weight of SSM is set to be 0.5, TUF
achieves the best performance when the weight of VCA is also set
to be 0.5. TUF with any weight setting outperforms SSM and its
performance consistently improves as the weight of VCA increases
from 0.1 to 0.5. The experimental results for the case of varying
the SSM weight, as presented in Fig. 8 (b), are similar. TUF with
both weights set to be the default value of 0.5 achieves the best
performance.

4.4. Scalability evaluation

The algorithms were evaluated on DBLP. VCA reasons about
journal by author. In the first case, we vary data size (mea-
sured by the total number of tuples) from 200,000 to 800,000.
In the second case, the number of tuples is set to 200, to better
measure the scalability with the number of attributes, author at-
tribute is duplicated multiple times and appended to the relation
R, and the horizon-axis of Fig. 9 (b) denote number of duplicates.

The experimental results are presented in Fig. 9. From Fig. 9 (a),
we observe that the consumed time of VCA increases nearly
quadratically with data size (consistent with Lemma 2). From
Fig. 9 (b), we observe that our approach scales linear with the
number of attributes.
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5. Related work

Attribute Values Matching is an important research problem
in data quality community, and the state-of-the-art approaches
for attribute value matching are mainly based on string similarity
among attribute values. In general, string similarity metrics can be
broadly classified into three categories|8]: character-based, token-
based and hybrid. The character-based metrics treat an attribute
value as a long string. The most typical ones include edit distance,
affine gap cost [20] or the Jaro metric [10]. The token-based met-
rics, e.g., Jaccard Similarity, convert the strings to token sets and
consider similarity metrics on these sets. The token-based met-
rics are usually more effective than the character-based ones in
the circumstances where word order is unimportant. Similar to the
token-based metrics, the hybrid metrics [21,22] convert the strings
to token multisets. It also considers token similarity in measuring
the similarity between these multisets. However, as mentioned in
[8], different string similarity metrics usually have distinct suitable
application domains.

Beside the string similarity measurement, we also take into
consideration the evidential support from value correlation analy-
sis, which is distinct from existing approaches: (I) Constraint-based
approaches, e.g., [23-25], have been widely used in data clean-
ing. However, to match attribute values, the effectiveness of such
deterministic approaches may heavily rely on the quality of con-
straints (either specified by experts or discovered by automatic al-
gorithms) and the number of pairs of tuples captured by match-
ing pattern. In comparison, value correlation analysis or VCA, takes
a probabilistic approach and has much wider application scenario.
Those matching candidates failing to be captured as violations, e.g.,
“Journal on Very Large Databases” vs “VLDB ]” in Table 1, can still
be further resolved by VCA. (II) Bayesian theory [26] is also widely
used in pattern recognition and statistical inference. A significant
distinction lies in that the labels are predefined and distinct in
Bayesian classification, whereas in the task of attribute value match-
ing, the equivalence between labels need to be reasoned about.
Since Bayesian-based approaches can not be used directly for the
task of matching attribute values, we propose the novel concept of
value correlation analysis, which is rooted in Bayesian theory and
finally reduced to the ratio of matching probability across clusters
(e.g., venues) and the maximal counterpart within clusters.

Additionally, we also list extensively some other closely related
research work.

Duplicate Record Detection Duplicate record detection have been
extensively studied in the literature [3,27]. Most effective and
widely used approaches [28-30] were built on value matching on
individual attribute fields. They solved the additional problem of
how to merge the matching results on attribute fields. Obviously,
our work on attribute value matching is complementary to them
in that determining attribute value equivalence can effectively im-
prove the accuracy of record matching.

For efficient duplicate detection, there also exist some reason-
ably recent work on blocking techniques [31-33], which separate
records into blocks likely to contain matching pairs such that un-
necessary pair-wise comparisons can be avoided. It can be ob-
served that our work on attribute value equivalence reasoning can
be used to improve the blocking accuracy.

Schema Matching Schema matching [34,35] studies the prob-
lem of identifying columns that represent the same concept in
two relational tables. Effective techniques usually take a hybrid
approach by leveraging different criteria (e.g. linguistic matching,
instance-based matching, structured-based matching, constraint-
based matching and rule-based matching). The task of instance-
based matching studied in schema matching treats all the value
instances belonging to an attribute as a set and measures the set
similarity by token-based metrics. Its matching techniques are sim-

ilar to the techniques of string similarity measurement used for
value equivalence reasoning in that both of them reason based on
contents. In contrast, our work in this paper proposes to reason
about two attribute values’ equivalence by analyzing their correla-
tion with other attribute values. On the other hand, given a schema
matching result, our work can effectively reduce equivalence am-
biguity between attribute values and thus improve the accuracy of
record linkage.

Entity Name Disambiguation There also exist work on entity
name disambiguation in relational data [19] or on Web [36,37].
They assumed that identical names may refer to different real-
world entities and focused on distinguishing these names.

In the circumstance that two identical values may refer to two
different values, equivalence reasoning is very challenging because
every appearance of value should be assumed to correspond to a
distinct entity at the outset. An alternative solution is to first clus-
ter distinct values into equivalent groups, which is the topic of
this paper, and then distinguish the values in the same group. It
is worthy to point out that our proposed approach can be simi-
larly used to distinguish two identical values. In the case that two
identical values refer to two distinct entities, it can be supposed
that they are correlated with largely different other values. The
application of the proposed approach to value disambiguation is
however beyond the scope of this paper. Using Information from
External Knowledge Base The Web presents a huge pool of useful
knowledge, and we observe that various systems [38,39] have been
designed for information extraction on Web. Those extracted infor-
mation can be used either by adding more columns or rows, to en-
rich the relational data, on which value correlation analysis is run.

6. Conclusion

This paper first presents a novel probabilistic approach to rea-
son about attribute value equivalence in relational data by value
correlation analysis. It then proposes a unified framework that can
leverage both string similarity measurement and value correlation
analysis. Finally, our extensive experiments on real datasets have
validated the efficacy of the unified framework.

In this paper, we have focused on equivalence reasoning on
string values. Theoretically, the effectiveness of value correlation
analysis does not depend on the data type of attribute values.
Equipped with appropriate similarity metrics, the unified frame-
work can also be used for equivalence reasoning on numerical val-
ues. However, the existing methods for capturing similarity be-
tween numerical values are rather primitive. Therefore, the efficacy
of our proposed approach on numerical values needs to be further
investigated in future work.

In our default setting, only one attribute is taken as target at-
tribute, on which value pairs will be matched. In the case that
value equivalence should be considered on multiple attributes,
they can be processed one by one. However, determining value
equivalence on multiple attributes simultaneously is an interesting
problem, which may deserve much more complex model or algo-
rithm, thus can be taken as an interesting research point in future.
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