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In a wide variety of emerging data-intensive applications, such as social network analysis, Web document
clustering, entity resolution, and detection of consistently co-expressed genes in systems biology, the
detection of dense subgraphs cliques and k-plex is an essential component. Unfortunately, these problems
are NP-Complete and thus computationally intensive at scale — hence there is a need to come up with
techniques for distributing the computation across multiple machines such that the computation, which
is too time-consuming on a single machine, can be efficiently performed on a machine cluster given that
it is large enough.

In this paper, we first propose a new approach for maximal clique and k-plex enumeration, which
identifies dense subgraphs by binary graph partitioning. Given a connected graph G = (V,E), it has a
space complexity of O(|E|) and a time complexity of O(|E|u(G)), where 14(G) represents the number of
different cliques (k-plexes) existing in G. It recursively divides a graph until each task is sufficiently small
to be processed in parallel. We then develop parallel solutions and demonstrate how graph partitioning
can enable effective load balancing. Finally, we evaluate the performance of the proposed approach on
real and synthetic graph data and show that it performs considerably better than existing approaches in
both centralized and parallel settings. In the parallel setting, it can achieve the speedups of up to 10x over
existing approaches on large graphs. Our parallel algorithms are primarily implemented and evaluated
on MapReduce, a popular shared-nothing parallel framework, but can easily generalize to other shared-
nothing or shared-memory parallel frameworks. The work presented in this paper is an extension of our
preliminary work on the approach of binary graph partitioning for maximal clique enumeration. In this
work, we extend the proposed approach to handle maximal k-plex detection as well.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

entity resolution, each clique or k-plex may represent a block of
entities that might be merged.
Maximal clique and k-plex enumeration is NP-Complete. Hence

Avariety of emerging applications are focused on computations
over data modeled as a graph: examples include finding groups of
actors or communities in social networks [22,26], Web mining [23],
entity resolution [31], graph mining [45,50], and detection of con-
sistently co-expressed gene groups in systems biology [32]. For the
problems just cited, as well as a number of others, a critical com-
ponent of the analysis is the detection of cliques (fully connected
components), and in some cases highly connected components or
k-plexes, in the structure of the network graph. For instance, for
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a great deal of effort has been spent on efficient search algo-
rithms [5,42,6,1,40,17]. Most of existing algorithms for maximal
clique and k-plex enumeration are based on the classical algorithm
proposed by Bron and Kerbosch (BK) [5], which uses a backtracking
technique to explore search space and limits the size of its search
space by remembering the search paths it has already visited. A
variant [42] of the BK algorithm also provides a worst-case-optimal
solution. In practice, the BK algorithm has been widely reported as
being faster than its alternatives [7,18].

Data-intensive applications usually require clique and k-plex
detection to be operated over large graphs, hence there is a need
to parallelize it on a large machine cluster. We note that there
have been a variety of proposals that divide the graph into smaller
subcomponents and exploit parallelism to improve performance
[47,27,49,37,12]. They have been empirically shown to speed com-
putation in massive networks. However, built on the BK algorithm,
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their performance may be limited by the efficiency of BK search
and how evenly the graph is partitioned. In fact, as we show in ex-
perimental evaluation of Section 5, their performance is quite sen-
sitive to particular graph characteristics.

This paper presents a new approach for maximal clique and
k-plex enumeration. It computes maximal dense subgraphs by re-
cursive binary graph partitioning. Versus prior work in this area, its
key insight is to exploit iterative decomposition during the compu-
tation. It recursively divides a graph until each task is sufficiently
small to be processed in parallel. As a result, its computation can be
effectively parallelized across a machine cluster such that the com-
putation, which may be too time-consuming on a single machine,
can be efficiently performed in parallel.

Our proposed approach is based on iterative data processing
and can work with existing popular shared-nothing or shared-
memory platforms. In this paper, we choose MapReduce for par-
allel evaluation due to its friendly programming interface and the
maturity and wide availability of its implementations. However,
the implementation can easily generalize to other parallel plat-
forms. A preliminary version of our work on maximal clique enu-
meration has been published in [8]. In this paper, we extend the
proposed approach to handle maximal k-plex enumeration as well.
Our major contributions are summarized as follows:

1. We propose a novel and efficient approach for maximal clique
enumeration. Given a connected graph G = (V,E), it has a
space complexity of O(|E|) and a time complexity of O(|E|u(G)),
where 11 (G) represents the number of distinct cliques in G.

2. We develop a parallel solution to maximal clique enumeration
by parallelizing the proposed algorithms and implementing
the corresponding parallel algorithms based on MapReduce.
By using graph partitioning to divide the tasks, the proposed
solution can effectively parallelize maximal clique computation
with improved load balancing.

3. We extend our techniques to also support maximal k-plex enu-
meration and achieve similar theoretical and practical results.

4. We experimentally evaluate the performance of our proposed
approach over a wide variety of open-source graph data. Our ex-
tensive experiments demonstrate that it performs considerably
better than existing techniques in both centralized and paral-
lel settings. In the parallel setting, our approach achieves the
speedups of up to 10x over existing approaches on large graphs.

The rest of this paper is organized as follows: Section 2 provides
the background information and the description of the existing
techniques. Section 3 presents our new sequential algorithms for
maximal clique and k-plex enumeration. Section 4 presents our
parallel solutions to maximal clique and k-plex enumeration and
their MapReduce implementations. Section 5 empirically evaluates
the performance of our approach on real and synthetic datasets.
Section 6 discusses related work. Finally, Section 7 concludes this
paper with some thoughts on future work.

2. Preliminaries
2.1. Definition: Cliques and k-plex

A clique is a subgraph in which every pair of vertices is con-
nected by an edge. A quasi-clique usually refers to a dense sub-
graph in which every vertex is directly connected to most of the
other vertices. In this paper, we focus on a type of quasi-clique
called k-plex, whose formal definition is stated as follows:

Definition 1. Aninduced subgraph G; consisting of a set of vertices
Viin G is a k-plex if Vv € V;, deg(v) > (|V;| — k), in which deg(v)
represents the degree of vertex v in G;.

Obviously a 1-plex corresponds to a clique. The k-plexes with
low values of k (e.g., k = 2 or 3) provide good relaxations of clique
that closely resemble the cohesive subgroups existing in real net-
works. The definitions of a maximal clique (k-plex) are as follows:

Definition 2. A maximal clique (k-plex) in a graph G is a clique
(k-plex) not contained by any other clique (k-plex) in G.

The problems of maximal clique and k-plex enumeration refer
to identifying all the maximal cliques and k-plexes in a given graph
G. Since each connected component in G can be processed indepen-
dently, we assume that G is a connected graph in this paper.

2.2. Classical sequential algorithms

Algorithm 1: enumerateCliqueBK (anchor, cand,not)
1 if (cand=0) then

2 if(not =) then
L Output anchor;
4 else
fix_v < the vertex in cand that is connected to the greatest
number of other vertices in cand;
6 cur_v <« fix_v;
while (cur_v # NULL) do
8 new_not <« all the vertices in not that are connected to
cur_v;
9 new_cand < all the vertices in cand that are connected to
cur_v;
10 new_anchor<sub + {cur_v};
1 enumerateCliqueBK(new_anchor,new_cand,new_not);
12 not<—not+ {cur_v};
13 cand<«cand - {cur_v};
14 if (there is a vertex v in cand that is not connected to fix_v)
then
15 | cur_v < v;
16 else
17 L cur_v < NULL;

For maximal clique enumeration, the BK algorithm [5] has been
widely reported as being faster in practice than its alternatives
[18,37]. It is in essence a depth-first search, augmented with prun-
ing tricks. Given a current vertex v and a set of candidate ver-
tices S, it iteratively chooses a vertex u in S such that N(u) has
the biggest intersection set with S, in which N(u) represents the
set of u’s neighboring vertices in S. When the candidate set S be-
comes empty, the algorithm outputs corresponding cliques and
backtracks. It recursively traverses a search tree, performing the
operations of vertex selection, set update, clique generation and
backtracking.

The BK algorithm can be sketched by Alg. 1. It uses three vertex
sets to represent a search subtree: the set anchor records the list
of vertices in the current search path, the set cand records the list
of candidate vertices that are not in sub but connected to every
vertex in sub, and the set not records the list of vertices that
are connected to every vertex in sub but could not produce new
maximal cliques if combined with the vertices in the sub set.

The existing sequential algorithms for maximal k-plex enumer-
ation are usually extensions of the classical algorithms for maximal
clique enumeration. They also use a depth-first search strategy and
similar pruning methods to reduce redundant traversals. Readers
can refer to the literature [29,3] for detailed algorithmic details.

2.3. Existing parallel solutions on MapReduce

In this subsection, we briefly describe the typical parallel
approach [47,27,15] for maximal clique enumeration based on
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MapReduce. The parallel approach for maximal k-plex enumera-
tion [46] is similar except that it invokes centralized k-plex search
instead of clique search.

The parallel approach consists of two steps. It first retrieves
the relevant induced subgraph of every vertex and then computes
their maximal cliques in parallel. For the computation on an indi-
vidual vertex, it simply adopts the classical sequential algorithms.
Typically, enumerating the maximal cliques containing a vertex is
supposed to be performed on a single machine. In case that the
computation on a vertex is extremely time-consuming due to the
large number of maximal cliques (as we will show in Section 5),
it becomes a parallel performance bottleneck. The technique pro-
posed in [37] can parallelize maximal clique enumeration on an in-
dividual vertex. It uses candidate path data structures to record the
search progress such that any search subtree can be traversed in-
dependently. It achieves better load balancing by allowing a com-
puting node to steal some tasks from others when becoming idle.
The proposed technique was implemented by MPI, but can eas-
ily generalize to other shared-nothing parallel frameworks such as
MapReduce. However, as we will show in Section 5, its parallel ef-
ficiency may still be limited by unevenness of search subtree sizes.

3. Sequential algorithms

In this section, we propose novel sequential algorithms for
maximal clique and k-plex enumeration, prove their complexity
bounds and describe their efficient implementation.

3.1. Idea: graph partitioning

We illustrate the idea behind the new sequential algorithms by
an example of maximal clique detection. As shown in Fig. 1(1), the
graph G consists of the vertices, {v1, v, v3, V4, vs}. We randomly
choose a vertex in G (e.g. vq) as the partitioning anchor and
partition G into two subgraphs Gi and G;. G} denotes the
induced subgraph consisting of v; and its neighboring vertices in G,
{v1, v2, v3}. G] denotes the induced subgraph of G consisting of all
the vertices not in GT, {vs, vs}, and their neighboring vertices in
G, {v,, v3}. The subgraphs GT and G| are shown in Fig. 1(2) and
(3) respectively. We observe that any maximal clique of G is an
induced subgraph of either G} or G; .

Generally, we have the following theorem:

Theorem 1. Given a graph G, we partition G into two subgraphs, G
and G, in which v denotes a partitioning anchor, G}~ denotes the
induced subgraph consisting of vertex v and its neighboring vertices in
G, and G, denotes the induced subgraph consisting of all the vertices
notin G} and their neighboring vertices in G. Then, any maximal clique
of Gis an induced subgraph of either G} or G, .

Proof. If a maximal clique contains the vertex v, it should be an
induced subgraph of G}. Otherwise, it should contain at least one
vertex not in G}. Suppose that it is the vertex u. As a result, the
maximal clique is an induced subgraph of G,, which consists of
vertex u and its neighboring vertices. According to the definition
of G, G, is obviously an induced subgraph of G, . Therefore, the
maximal clique is an induced subgraph of G;. O

According to Theorem 1, maximal clique detection in G can be
performed by searching for the maximal cliques in G} and G,
independently. The partitioning operation can be recursively in-
voked until all the resulting subgraphs become cliques. Obviously,
all the maximal cliques in G are contained in the set of the resulting
cliques. Unfortunately, a resulting clique generated by the above
process cannot be guaranteed to be maximal. Therefore, enumer-
ation algorithms should filter out those which are not maximal.

Algorithm 2: enumerateClique (anchor,cand,not)

1 if (G(cand) is a clique) then

2 | Output the clique G(anchor U cand);

3 else

4 while (G(cand) is NOT a clique) do

5 Choose a vertex v with the smallest degree in G(cand);
6 anchort < anchor U {v};

7 cand® < cand NN(v);

8 not™ < not NN(v);

9 if (Bu € not™:u is connected to all the vertices in cand™)

then

10 L enumerateClique (anchor™,cand™,not™);
1 cand < cand — {v};
12 not < not U {v};
13 if (Fu € not:u is connected to all the vertices in cand) then
14 | Output the clique G(anchor U cand);

3.2. Maximal clique enumeration

3.2.1. A general algorithm

The algorithm iteratively partitions a graph until it becomes
cliques. To reduce search space, it always chooses the vertex v with
the smallest degree in a graph as the partitioning anchor. It can
be observed that this strategy would usually result in a relatively
small graph and a larger one. Generally, the small graph would
be partitioned into cliques after only a few iterations, while the
size of the larger one could be effectively reduced as a result of
iterative partitioning. Unlike the BK algorithm, which recursively
extracts the induced subgraph consisting of the vertex with the
largest degree and its neighbors, our approach instead recursively
performs binary partitioning by choosing the partitioning anchor
with the smallest degree.

The algorithm is sketched in Alg. 2. Similar to the BK algorithm
as shown in Alg. 1, it employs three sets of vertices (anchor,
cand and not) to record the partitioning progress and prune
the subtrees that cannot generate maximal cliques. The recursive
function first checks whether the resulting subgraph is a clique
(Line 1). If yes, it simply outputs the subgraph. Otherwise, it
chooses a partitioning anchor v with the smallest degree in cand
and partitions G(cand) into G(cand™) and G(cand ™). G(cand™)
consists of v and its neighboring vertices in G(cand) (Lines
6-8). G(cand™) consists of all the vertices in G(cand) except v
(Lines 11-12). The algorithm recursively processes the subgraph
G(cand™) (Lines 9-10). Note that before the recursive function
is invoked, the algorithm prunes the search space by inspecting
whether there exists a vertex in the not™ set that is connected to
all the vertices in the cand* set (Line 9). Updating G(cand) with
G(cand™) (Lines 11-12), it then iteratively invokes the partition
operation to search for the maximal cliques in G(cand™) until
G(cand ™) becomes a clique (Lines 4-12). After G(cand ~) becomes
aclique, the algorithm checks whether it is maximal (Lines 13-14).

Given an input graph G = (V, E), the algorithm can be set in
motion by setting anchor = (J, not = ¥ and cand = V. Suppose
that we are running Alg. 2 on the example graph as shown in Fig. 1.
Originally, anchor = @, not = ¥ and cand = {v4, Vo, V3, Vg, Us}.
The vertex v; has the smallest degree of 2, is thus chosen as the
partitioning anchor. G is then partitioned into G; and Gj. G
consists of v1 and its neighboring vertices, {v1, v, v3}. G} consists
of the vertices, {vy, v3, v4, vs}. For Gf, anchor = {v;},not =
@ and cand = {vy, v3}. For G, anchor = #,not = {v4}
and cand = {v,, v3, v4, Us}. It can be observed that G| is not a
clique and v3 has the smallest degree of 2 in G} . G; would then
be partitioned into two subgraphs consisting of {v,, vs, vs} and
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Fig. 1. A graph partitioning example.

{va, v4, vs} respectively, which are both clique. Therefore, maximal
cliques of G can be computed with two partitioning operations.

On the correctness of Alg. 2, we have Theorem 2. Here we only
provide with its proof sketch. More details can be found in our
technical report [9].

Theorem 2. Alg. 2 exactly returns all the maximal cliques in G.

Proof. Firstly, consider a variant of Alg. 2, denoted by Alg. 2%,
which is the same as Alg. 2 except that it does not have the pruning
operations as specified at Lines 9 and 15 of Alg. 2. It can be observed
that all the maximal cliques in G are contained in the set of cliques
returned by Alg. 2*. Secondly, if there exists a vertex in the current
not set that is connected to all the vertices in the current cand set,
the function cannot generate any new maximal clique. Finally, any
clique returned by Alg. 2 is maximal. O

In practical implementation, the algorithm iteratively partitions
an input graph in a depth-first manner. After partitioning G
into G(cand™) and G(cand™), it always processes the G(cand™)
subgraph before G(cand™), and pushes the resulting G(cand™)
into a stack for later processing. Whenever a G(cand ™) subgraph
becomes a clique, it pops a G(cand™) subgraph from the stack and
repeats the iterative partitioning operation. On the space and time
complexity of Alg. 2, we have the following theorem:

Theorem 3. Given a connected graph G = (V,E), Alg. 2 has the
space complexity of O(|E|) and the time complexity of O(|E|u(G)), in
which u(G) represents the number of different cliques in G.

Proof. We first analyzes its space complexity. It iteratively
partitions the G(cand ™) branch until G(cand ™) becomes a clique.
Besides the G(cand™) graph, it also has to store the resulting
G(cand™) subgraphs in a stack S. Each G(cand™) results from
a partitioning operation with a vertex v; as anchor. Note that
the first-in-last-out operation order of stack ensures that each
G(cand™) subgraph in the stack S has a distinct partitioning
anchor. Since each vertex in the anchor™, cand™ and not™ sets
of G(cand™) (except the vertex v; itself) should be connected to v;,
the required space to store G(cand™) is bound by O(|E;|), in which
E; represents the set of edges with v; as one of its end points. As a
result, the required space to store all G(cand™) branches is bound
by O(|E|). It follows that the space complexity of Alg. 2 is O(|E|).
On the time complexity, consider a variant of Alg. 2 without
the pruning operation specified on Line 9. Its time complexity,
O(|E|t(G)), is an upper bound on the time complexity of Alg.2. O

3.2.2. Implementation notes

The program reads a graph G into memory, and then iteratively
computes the maximal cliques of every vertex in G. We store the
vertices in the original graph G in an array and their adjacency
lists as hash sets. Similarly, all the cand sets are maintained by
hash sets. As a result, the intersection of two vertex sets can be
performed by hash look-ups. Clique verification is achieved by
checking vertex degrees. The degree of a vertex v; in cand™ of
G/ is computed by intersecting the adjacency set of v; with the

cand* set. For the vertices in the cand™ set of G, only those
connected to v need to decrease their degrees by 1. Selecting a
partitioning anchor with the minimal degree in cand however
requires O(|cand|) time because it has to sequentially scan all the
vertices in the hash set. To enable more efficient anchor selection,
we also maintain a degree map, in which the vertex degrees of
cand are stored as a sorted linked list and each entry in the degree
list has a corresponding vertex list consisting of all the vertices
with the specified degree. The degree map of the G, subgraph is
inherited from that of its parent with corresponding updates while
the degree map of G/ is constructed from scratch. With the degree
map, selecting a partitioning anchor in cand only involves picking
up a vertex in the vertex list of the first entry in the degree list. It
takes only constant time.

3.3. Maximal k-plex enumeration

K-plex detection is more costly than clique detection but allows
for relaxed matching criteria, and hence is needed in some appli-
cations. In this section, we generalize the sequential algorithm for
maximal clique enumeration to handle maximal k-plex (k > 2)
enumeration.

3.3.1. A general algorithm

Algorithm 3: enumerateKplex (anchor, cand,not)

1 if (G(anchor U cand)is a k-plex) then
2 if (Fu € not:G(anchor U cand U {u})isak-plex)then

3 | Output G(anchor U cand);

4 else

5 while (G(anchor U cand)is NOT a k-plex) do

6 Choose a vertex v with the smallest degree in G(cand);

7 anchor™ <« anchor U {v};

8 cand® < {u|u € cand A G(anchor™ U {u}) is a k-plex};

9 not™ <« {ulu € not A G(anchor™ U {u}) is a k-plex};

10 if (Fu € not™:uis connected to all the vertices in anchor™
and cand’) then

1 L enumerateKplex (anchor™®,candt,not™);

12 cand < cand — {v};

13 not < not U {v};

14 if (Fu € not:G(anchor U cand U {ul})is ak-plex) then

15 | Output G(anchor U cand);

Similar to the case of maximal clique enumeration, the algo-
rithm for maximal k-plex enumeration selects the vertex v with
the smallest degree as the partitioning anchor in a graph G and
partitions it into two subgraphs G and G, . The G branch cor-
responds to the case that maximal k-plexes contain the vertex v
while the G branch corresponds to the other case that maximal
k-plexes do not contain v. It thereafter proceeds to iteratively par-
tition G, until it becomes a k-plex. All the generated G/''s are re-
cursively partitioned.
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The recursive function is sketched in Alg. 3. The anchor, cand
and not vertex sets serve the purposes similar to those explained
in Alg. 2. Lines 7-9 compute the three vertex sets for G} Line 10
specifies a pruning condition. If there exists a vertex u innot ™ such
that u is connected to all the vertices in anchor™ and cand™, then
any induced k-plex of G/ is not maximal. As a result, the G; branch
can be pruned. However, this condition does not guarantee to filter
out all the non-maximal k-plexes. Therefore, Line 2 checks whether
adding any vertex in not to a candidate k-plex would result in a
bigger k-plex. If yes, the candidate k-plex is not maximal.

Similar to Alg. 2, given an input graph G = (V, E), Alg. 3 can be
set in motion by setting anchor = J, not = ¢ and cand = V. On
algorithmic correctness, we have Theorem 4, whose proofis similar
to the proof of Theorem 2.

Theorem 4. Alg. 3 exactly returns all the maximal k-plexes in G.

Proof. Firstly, consider a variant of Alg. 3, denoted by Alg. 3%,
which is the same as Alg. 3 except that it does not have the
pruning operations as specified at Lines 10 and 14 of Alg. 3. It can
be observed that all the maximal k-plexes in G are contained in
the set of k-plexes returned by Alg. 3*. Secondly, if there exists a
vertex in the current not set that is connected to all the vertices in
the current anchor and cand sets, the recursive function cannot
generate any new maximal k-plex. Finally, any k-plex returned by
Alg. 3 is maximal. O

On the space and time complexity, we have Theorem 5.

Theorem 5. Given a connected graph G = (V,E), Alg. 3 has the
space complexity of O(|V|?) and the time complexity of O(|E|u«(G)),
in which i (G) represents the number of different k- plexes in G.

Proof. Unlike the case of maximal clique enumeration, Alg. 3
cannot guarantee that the vertices in the anchor™, cand* and
not™ sets of G} are connected to the partitioning anchor v. As a
result, it requires O(|V|?) space to store intermediate results in the
worst case. On time complexity, each line of statement in Alg. 3 can
be performed in O(|E|) time. The size of the traversal tree generated
by the recursive function is bound by O(u,(G)). O

3.3.2. Aspace optimal algorithm

Note that the space complexity of Alg. 3, O(]V|?), is not
asymptotically optimal. In this subsection, we present a variant of
Alg. 3 (as shown in Alg. 4), which has the same time complexity
O(|E|uk(G)) but achieves the optimal O(|E|) space complexity.
Besides three vertex sets, anchor, cand and not, it also uses
a stack data structure S to track the traversal progress of the
partitioning search tree. The stack S maintains a series of vertices,
each of which is marked as inclusive or exclusive. The entry of
an inclusive vertex v in S, denoted by v™, corresponds to the
partitioning branch G}, in which the searched subgraphs should
contain v. In contrast, the entry of an exclusive vertex v in S,
denoted by v~, corresponds to the other partitioning branch G,
in which the searched subgraphs do not contain v.

Similar to Alg. 3, Alg. 4 executes a depth-first traversal. It first
traverses along the G/ branch (Lines 10-13). The anchor v is added
to anchor. The inclusive vertex v, v™, is pushed into S. cand is
updated in the same way as in Alg. 3. Whenever it reaches a
leaf node, it backtracks to the last inclusive branch (Lines 15-17),
which corresponds to the latest inclusive vertex pushed into S.
Then it continues to traverse along the G, branch (Lines 18-23).
The exclusive vertex v, v™, is pushed into S. The vertex v is also
removed from anchor. Because the algorithm maintains only one
cand during the partitioning process, the cand set of G, has to
be constructed from the current anchor and not sets (Line 23). It
is worthy to point out that when traversing along the G, branch,

Algorithm 4: A Space Optimal Algorithm for Maximal K-plex
Enumerationon G = (V, E)

1 Stack$S <« @;

2 anchor< ¢;

3 cand<«V;

4 not<« (; while (G(anchor U cand)is not a k-plex) or (S # ) do

5 if G(anchor U cand) can not be pruned then

6 if G(anchor U cand)is a k-plex then

7 if (Ju € not:G(anchor U cand U {ul})isak-plex)
then

3 | Output G(anchor U cand);

9 else

10 Choose a vertex v with the smallest degree in G(cand);

1 S.push(v™);

12 anchor=anchor U{v};

13 cand={u|u € (cand-{v})A G(anchor U {u})is a
k-plex};

14 if (G(anchor U cand)is pruned) or (G(anchor U cand)isa

k-plex) then

15 while S.top() == v~ do

16 S.pop();

17 not=not-{v};

18 if S.top() == v* then

19 S.pop();

20 S.push(v™);

21 anchor=anchor-{v};

22 not=notU{v};

23 cand={u|u € (V —not — anchor) A G(anchor U {u})
is a k-plex};

the algorithm does not update the not set. This modification is to
facilitate constructing the not set of G, branch.

Alg. 4 only needs to maintain three vertex sets, anchor, cand
and not, a stack recording traversal progress, as well as the
adjacency lists of vertices. Also note that each line of statement
in Alg. 4 can be performed in O(|E|) time. Therefore, we have the
following theorem:

Theorem 6. Given a connected graph G = (V, E), Alg. 4 has a space
complexity of O(|E|) and a time complexity of O(|E|ur(G)).

3.3.3. Implementation notes

Even though Alg. 4 achieves the same time complexity as Alg. 3
with the optimal space complexity, it does not remember the
G, subgraphs while performing graph partitioning operations.
Neither does it filter out the unnecessary vertices in the not sets
while traversing along the G branches. These properties make it
substantially less efficient than Alg. 3 in practical implementation.

As in the implementation of maximal clique enumeration, we
maintain the structure of degree map for efficient anchor selection.
To facilitate efficient k-plex and pruning verification, for each
vertex u in anchor, cand and not, we also maintain two degrees
deg,(u) and deg.(u), in which deg,(u) denotes the number of
vertices in anchor connected to u and deg, (1) denotes the number
of vertices in cand connected to u. With these two degrees, k-plex
and pruning verifications as specified in Alg. 3 can be efficiently
processed. The details on how to efficiently maintain the values of
deg,(u) and deg. (1) and use them for efficient k-plex and pruning
verification can be found in our technical report [9].

4. Parallel solutions

In this section, we present the parallel algorithms and describe
their corresponding MapReduce implementations.
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4.1. Parallel algorithms

The algorithms essentially compute the maximal cliques or
k-plexes of vertices in parallel. They perform the computation on
every vertex by Algs. 2 and 3. Unfortunately, computational cost
on individual vertices may be unbalanced. The computations on
some vertices may be more expensive than on others because they
have larger search traversal trees. In case that the computation on
a vertex is too time-consuming, it becomes a parallel performance
bottleneck. A good property of our proposed approach is that it
can effectively transform an expensive computation at a vertex
into many sufficiently small computations by only a few iterations.
In practice, as demonstrated in our experiments in Section 5.2, it
usually takes no more than 5 iterations to transform a big graph
into many sufficiently small subgraphs. With sufficiently small
tasks, effective load balancing can be achieved by sending some
tasks on the computing nodes with heavy workload to others with
lighter one.

In general, the parallel algorithm for maximal clique (or k-plex)
detection consists of the phases of subgraph retrieval and iterative
computation. In the first phase, for every vertex v in the graph G,
the induced subgraph of G whose vertices are relevant to the com-
putation of v's maximal cliques or k-plexes is retrieved. Subgraph
retrieval should be distributed across multiple workers. The second
phase is performed by iteratively invoking the Compute-Shuffle cy-
cle. At the Compute step, each worker computes maximal cliques
(k-plexes) of the graphs assigned to it; at the Shuffle step, all the
unfinished graphs at the workers are reshuffled such that every
worker receives roughly the same number of them. The workload
limit of the Compute step can be quantified by the number of par-
titioning operations executed or CPU time consumed.

4.2. MapReduce implementation

In this subsection, we describe the MapReduce implementa-
tions of subgraph retrieval and iterative computation.

4.2.1. Subgraph retrieval

Given a connected graph G = (V,E), let d(u, v) denote the
number of edges in the shortest path between two vertices u
and v in G. The diameter of G, denoted by diam(G), is defined
as diam(G) = maxy ,eyd(u, v). A connected graph G is y-quasi-
complete if every vertex in G has a degree at least y - (V| — 1).
According to [33], the relationship between the diameter of a
y-quasi-complete graph and y can be established by Theorem 7.

Theorem 7. Let G be a y-quasi-complete graph such that n = |V| >
LIf 1 <y < ™2 thendiam(G) < 2.

n—1’

The proof of Theorem 7 can be found in [33]. According to
Theorem 7, with low k values(k < (|V| — (%1)), any maximal
k-plex of v consists of v and its 2-hop neighbors. Therefore,
subgraph retrieval for maximal clique and k-plex enumerations
can be built on 2-hop retrieval.

Noting that non-trivial cliques consist of triangles, we propose
to use the technique of triangle enumeration proposed in [14] to
implement the process of subgraph retrieval for maximal clique
enumeration. Compared with 2-hop retrieval, triangle enumera-
tion usually generates less intermediate data, thus can achieve bet-
ter performance. There also exists more recent work (e.g. [ 16]) that
can optimize the process of subgraph retrieval. More discussions
on this perspective are however beyond the scope of this paper
because it focuses on the performance of enumerating maximal
cliques and k-plexes.

As in [6], we represent each triangle with a vertex as its key
and the other two vertices as its value. For instance, the triangle

Algorithm 5: Maximal Clique Computation in Reducer

Input: A queue of unfinished subgraphs Q.
while (Q. is not empty) and (workload limit is not reached) do

1

2 Dequeue a subgraph G, from Q.;

3 while (G, is not a clique) and (workload limit is not reached) do

4 Choose the vertex w with the minimal degree in G, as the
anchor;

5 Partition G, into G} and G;

6 if |cand(G})| < k then

7 | Recursively partition G} using Alg. 2 to the end;

8 else

9 if G}, can not be pruned then

10 if G} is a clique then

1 | OutputGy;

12 else

13 L Enqueue G into Q.;

14 Gu=G,;

15 if G, can not be pruned then

16 if G, is a clique then

17 | Output Gy;

18 else

19 | Enqueue G, into Q;

consisting of the vertices {1, 2, 3} is represented by the key-value
pair of (1, {2, 3}). At end of subgraph retrieval, each vertex v has
a corresponding triangle unit, which consists of all the key-value
pairs with v as their keys.

4.2.2. Iterative computation

We describe the program for iterative computation of maximal
clique enumeration in this subsection. The program for maximal
k-plex enumeration is the same except that it invokes Alg. 3 instead
of Alg. 2 in the implementation.

The program consists of a series of Map-Reduce cycles. In the
Map phase, the mappers read the unfinished subgraphs and ran-
domly map them to reducers such that each reducer receives
roughly the same number of subgraphs. In the Reduce phase, the
reducers enumerate the maximal cliques of their assigned sub-
graphs by Alg. 2. The Map-Reduce cycle is iteratively invoked until
no unfinished subgraph is left.

The algorithm of the computation at a reducer is sketched in Alg.
5. Maintaining the subgraphs by a queue Q., it iteratively dequeues
a subgraph G, from the queue for graph partitioning. If the result-
ing G/ has a small size, which means that its maximal clique com-
putation can be finished in short time, it is recursively partitioned
to the end (Lines 6-7). Otherwise, it is temporarily enqueued into
Q. if it is not a clique (Line 13). It then iteratively partitions G, in
the same manner as G, (Line 17). The operations of subgraph de-
queue and graph partitioning are iteratively performed until the
queue becomes empty or a predefined workload limit is reached.

For each vertex v in the original graph G, the program maintains
the vertices and their adjacency lists in G, by a hash table, which
is constructed from v’s triangle unit. It represents a subgraph in
the queue by three vertex sets (anchor, cand and not). Note that
partitioning an induced subgraph G, of G, requires the hash table
of G,. Therefore, between MapReduce cycles, besides the vertex
sets of subgraphs, the program also transfers the hash tables of
their corresponding G, to the next cycle. However, at most one
copy of the hash table of G, is needed for each reducer.

5. Experimental evaluation

In this section, we empirically evaluate the performance of our
new approach by a comparative study. In the centralized setting
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Table 1

Sequential maximal clique enumeration on real datasets.
Dataset 4 |E| Search Space (R) Runtime (s)

GP BK GP BK

Social Networks
wikivote 7,115 100,762 2.11 2.40 2.83 2.36
epinions 75,879 405,740 2.27 2.66 13.39 13.27
Slashdot0902 82,168 504,230 1.87 3.02 7.56 4.50
Gowalla_edges 196,591 950,327 2.30 2.96 8.44 12.45
youtube 1,134,890 2,987,624 2.28 3.87 19.24 33.13
Pokec 1,632,803 22,301,964 2.10 3.38 157.98 114.41
WikiTalk 2,394,385 4,659,565 223 2.75 907.732 9258.45
Web Graphs
uk2005 129,632 11,744,049 152.30 308.74 16.95 27.92
it2004 509,338 7,178,413 4.26 9.06 12.71 17.67
BerkStan 685,230 6,649,470 1.69 2.01 17.31 32.92
WebGoogle 875,713 4,322,051 241 3.98 15.41 19.15
WikiComm 1,928,669 3,494,674 2.34 3.48 48.71 403.75
wikipedia2009 1,864,433 4,507,315 2.00 5.30 20.65 16.28
Miscellaneous Networks
HepPh 34,546 420,877 2.17 28.24 3.55 4.24
EuAll 265,009 364,481 2.12 6.71 1.77 243
dblp2012 317,080 1,049,866 2.84 6.10 3.75 3.05
skitter 1,696,415 11,095,298 1.99 3.15 705.9 1745.94

(Section 5.1), for maximal clique enumeration, we compare our
approach with the state-of-the-art implementation of the BK al-
gorithm [41]. For maximal k-plex enumeration, we compare our
approach with a variant of the BK search algorithm proposed
in [46] as well as a more recent algorithm proposed in [4]. In
the parallel setting of Hadoop (Section 5.2), we compare our ap-
proach with the typical BK approach, which confines the compu-
tation on an individual vertex to a worker, as well as an improved
BK approach enhanced with dynamic load balancing (denoted by
BK-L) as proposed in [37]. The improved BK approach was origi-
nally implemented by MPI. We have instead implemented a sim-
ilar MapReduce version. We have also implemented our parallel
approach by MPI and compared it with the state-of-the-art MPI
implementation of parallel maximal clique enumeration [37] (Sec-
tion 5.3). Finally, we evaluate parallelizability of our approach in
Section 5.4. All our implementations have been made open-source.
They can be downloaded at [19].

Our experiments are conducted on both real and synthetic
graph datasets. The evaluation on real datasets can show the ef-
ficiency of the proposed algorithms in real applications while the
evaluation on synthetic datasets can clearly demonstrate their sen-
sitivity to varying graph characteristics. The real datasets, which
are from [34,35], represent the graphs in many application do-
mains including social networks, Web graphs and Wiki commu-
nication networks. The synthetic datasets are generated by three
popular generators, SSCA#2 [20], R-MAT [2] and BTER [39]. A
SSCA#2 graph is made up of random-sized cliques, with a hierar-
chical inter-clique distribution of edges based on a distance metric.
We vary the values of the TotVertices and MaxCliqueSize param-
eters, which specify the number of vertices and the size of the
maximum clique respectively. The R-MAT generator applies the
Recursive Matrix graph model to produce the graphs with power-
law degree distributions and small-world characteristics, which
are common in many real-life graphs. We vary two parameter val-
ues, the number of vertices and the number of edges. The collec-
tions of the BTER graphs are community-structured and scale-free.
Its generator uses two parameters, rho_init and rho_decay, to con-
trol vertex degree distribution.

Centralized evaluation was conducted on a desktop with
memory size of 16G and 6 Intel Core i7 CPU with the frequency
of 3.3 GHz. Parallel evaluation was conducted on a 13-machine
cluster. Each machine runs the Ubuntu Linux (version 10.04),
has a memory size of 16G, disk storage of 160G and 16 Intel

Xeon E5502 CPUs with the frequency of 1.87 GHz. The parallel
approach based on MapReduce was implemented on Hadoop
(version 0.20.2) [21]. Each experiment was run three times and
its running time averaged. We observed that the time difference
between runnings does not exceed 10% of the total consumed time.

5.1. Centralized evaluation

We evaluate the efficiency of different approaches on two met-
rics: search tree size and runtime. Both BK and GP are search algo-
rithms. The metric of search tree size measures the number of unit
operations performed by BK and GP. In the BK approach, search
tree size corresponds to the total number of extracted subgraphs,
whose set of vertices should be computed; in the GP approach, it
corresponds to the total number of extracted G, subgraphs and G,
cliques. On search space, we report the ratio of search tree size to
the total number of maximal cliques (k-plexes). The runtime in-
cludes both the cost of reading a graph into memory and search
cost. Note that while the runtime of an algorithm may depend on
its implementation details, search tree size accurately measures
search space and is independent of algorithmic implementations.
Besides efficiency, we also report memory requirement of the BK
and GP approaches for maximal clique enumeration. The memory
results for maximal k-plex enumeration are similar, thus omitted.

5.1.1. Maximal clique enumeration

The evaluation results on the real graphs are presented in
Table 1. Note that on some of the real datasets, both BK and GP run
very fast (less than 1 s). Their results are therefore not presented
here. Some datasets will be used for parallel evaluation because
maximal clique detection over them cannot be completed within
reasonable time on a desktop. It can be observed that on search
space, GP consistently outperforms BK by considerable margins.
This observation is due to the fact that GP uses a more aggressive
filtering strategy than BK. As shown in Alg. 1, BKiteratively selects a
vertex with the largest degree in the current graph and partitions
it into multiple subgraphs until the set cand becomes empty. In
contrast, GP, as shown in Alg. 2, iteratively partitions a graph until
it becomes a clique. Moreover, at Line 9 of Alg. 2, GP uses the
set of not to filter out the subgraphs that cannot generate new
maximal cliques. However, GP’s filtering strategy comes with a
cost because it has to check the filtering conditions as specified at
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Fig. 2. Evaluation of sequential maximal clique enumeration on R-MAT and SSCA.

Table 2

Enumerating large maximal cliques (size > 10) on real graphs.
Runtime (s) Youtube Pokec WikiTalk WikiComm Skitter
GP 12.20 117.65 890.48 28.26 679.533
BK 16.45 89.85 8325.03 186.91 1579.92

Lines 9 and 12 in Alg. 2. Additionally, GP has to update G(cand)
and transform it into G(cand ™). Therefore, GP usually takes more
time per traversal than BK. It can be observed that on runtime,
GP still achieves an overall better performance than BK but the
improvement margins tend to become smaller. It is worthy to
point out that the performance of BK is much more volatile than
that of GP. For instance, on both WikiComm and WikiTalk, GP
runs around 10 times faster than BK. In contrast, on the datasets
(e.g. Pokec) where GP performs worse than BK, the performance
of GP is competitive (its runtime is less than two times that of
BK). These experiments demonstrate that the performance of BK
can be quite sensitive to graph characteristics. In comparison, the
performance of GP is more stable.

The experiments as reported in Table 1 enumerate the maximal
cliques of any size. In some applications, users may only be
interested in large maximal cliques, or the maximal cliques whose
sizes exceed a user-specified threshold. Therefore, we also report
the comparative results on enumerating large maximal cliques.
The threshold of clique size is set to be 10. The detailed results
on some real graphs in Table 1, which require relatively longer
runtime, are presented in Table 2. It can be observed that setting
size threshold can reduce runtime, but the relative performance of
GP and BK remains the same as observed in Table 1.

We also evaluate their performance on synthetic graphs to
investigate how their performance varies with different graph
characteristics and densities. For R-MAT graphs, the number of
vertices is set to be 10,000 and the edge-to-vertex ratio varies
from 60 to 140. For SSCA graphs, the number of vertices is set

to be 220 and the size of the maximum clique varies from 100
to 180. The evaluation results on R-MAT and SSCA graphs are
presented in Fig. 2. Similar to what was observed on real graphs, GP
outperforms BK on both search space and runtime. It is interesting
to observe that when the graphs are sparse, GP may perform worse
than BK on runtime (but its performance is competitive). However,
with increasing graph density, GP easily outperforms BK and its
performance advantage steadily increases as well.

Their performance comparisons on the BTER datasets are also
shown in Table 3. Note that unlike R-MAT and SSCA, the BTER
generator does not allow users to directly specify graph density.
We fixed the value of parameter rho_decay at the default 0.5 and
varied the value of another parameter rho_init from 0.3 to 0.7. The
generated graphs are similar in edge/vertex ratio (at around 10)
and maximum clique size (between 6-15). It can be observed that
BTER is not a challenging task for maximal clique detection because
both BK and GP run fast. GP performs better than BK on search
space. On runtime, GP however does not perform as well as BK but
its performance is competitive.

Based on the experiments, we have the following observations:
(1) GP achieves an overall better and much more stable perfor-
mance than BK; (2) the performance advantage of GP over BK tends
to increase with graph density. Since maximal clique detection on
dense graphs is usually more computationally expensive than on
sparse graphs, these observations bode well for GP’s applications
on real graphs.

Evaluation on memory requirement. We also compare memory
requirement of the BK and GP approaches. The detailed results on
some real graphs in Table 1, which have relatively larger sizes,
are presented in Table 4. The metric of Graph Memory denotes
the required memory for storing a graph. The metric of Running
Memory instead denotes the maximal additional memory required
by search process. It can be observed that GP requires significantly
more memory than BK on Graph Memory. The difference results
from the ways of a graph being stored in the BK and GP approaches.
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Table 3
Sequential maximal clique detection on BTER datasets.
BTER datasets V| |E| Search Space (R) Runtime (s)
GP BK GP BK
cit-HepPh-0.3-0.5 34,256 450,975 1.838 4739 1.647 1.286
cit-HepPh-0.5-0.5 34,295 443,769 2.157 3.144 2.603 2.019
cit-HepPh-0.7-0.5 34,395 436,592 2.472 2.664 10.817 7.821
Table 4 Table 6
Memory requirement of sequential maximal clique enumeration. Sequential 2-plex detection on real datasets: GP vs algorithm of [4].
Datasets Graph Memory (MB) Running Memory Runtime (s) edu CA-GrQc  celegans infecthyper  caida
(MB) GP 1405  3.384 2.626 19.54 320.19
GP BK GP BK Algorithm of [4] 1023  7.87 9.87 89.54 >1200
Youtube 747.64 71.44 0.09 14.46
Pokec 3727.65 238.72 0.07 18.74 . - . .
WikiTalk 128951 136.11 214 27 44 caida cannot be finished within reasonable time on desktop. Its
WikiComm 963.49 127.22 1.44 27.42 result is therefore not presented here. The evaluation results on
Skitter 1860.51 155.92 1.27 19.50 the R-MAT datasets for 2-plex and 3-plex are presented in Fig. 3. It
can be observed that they are similar to what were reported on
Table 5 maximal clique enumeration except that GP outperforms BK by
Sequential k-plex detection on real datasets: GP vs BK. even larger margins. The maximal k-plexes of a graph have larger
Datasets Vi IE| Search Space Runtime (s) sizes than its maximal clques. BK traversal ona max!mal k-plex
(R) search tree is also less efficient than on a maximal clique search
cp BK cp BK tree. As aresult, the performance advantage of GP over BK becomes
1 -~ more considerable. On the R-MAT graphs, we observe that the
i'j‘zl exEva “3“0“3 031 6474 220 421 1405 1845 performance gap between BK and GP increases with graph density.
CA-GrQc 2158 13422 167 683 3384 5163 It is also worthy to point out that the performance advantage of GP
celegans 453 2025 124 259 2626 3228 over BK is more considerable on 3-plex computation than on 2-plex
infecthyper 113 2,196 334 1163 1954 92.82 computation.
caida 26,475 53,381 129 265 320.19  1013.28
3-plex Evaluation 5.1.4. Comparison with algorithm of [4]
Ei”c }gg }g; gg-gg ggg? We compare our implementation with the code the authors
-GrQe ) ’ . : of [4] kindly shared with us. The comparative results of maximal
celegans 1.09 1.40 9.07 59.37 . .
infecthyper 5.33 1487 81296  3935.32 2-plex detection on the real graphs are presented in Table 6.

BK represents the adjacency information in a graph by arrays.
GP instead stores it by hash sets, which need considerably
more memory than arrays in our C++ programming environment
(Microsoft Visual Studio 2015). On the metric of Running Memory,
both of them require significantly less memory compared with
what is required for Graph Memory. It is interesting to point out
that GP consumes considerably less running memory than BK.
Efficient BK search requires recursive implementation. In contrast,
our GP implementation only needs to simultaneously store the
subgraphs corresponding to the nodes in a path from the root to
a leaf in a search traversal tree. It is important to point out that GP’s
disadvantage compared with BK on Graph Memory should not be a
concern in practical implementation due to the fact that it can only
increase linearly with graph size.

5.1.2. Maximal k-plex enumeration

We evaluate the performance of the sequential GP algorithm for
maximal k-plex enumeration with low values of k (k = 2 and 3).
Maximal k-plex enumeration is much more costly than maximal
clique enumeration. Therefore, we can only use small real datasets
in centralized evaluation. The test synthetic R-MAT graphs also
have smaller sizes. On 2-plex detection, the R-MAT graphs have
10,000 vertices and their edge-to-vertex ratios vary from 5 to 25.
On 3-plex detection, the R-MAT graphs have 200 vertices and their
edge-to-vertex ratios vary from 5 to 25. The evaluation results on
the SSCA datasets were similar to what were observed on R-MAT,
thus omitted here.

5.1.3. Comparison with BK
The evaluation results on the real graphs are presented in
Table 5. Note that maximal 3-plex detection over the dataset of

Note that the code we compared with is without optimization.
According to the experimental results presented in [4], the
performance difference measured by runtime between the codes
w/o optimization is between 10% and 40%. It can be observed that
GP outperforms by the margins considerably larger than 40%.

5.2. Parallel evaluation by Hadoop

In this subsection, we compare the GP approach against the
BK and BK-L approaches in parallel setting. Since all the parallel
approaches use the same method of subgraph retrieval, we exclude
its cost from our comparative study. However, we do report the
consumed time of subgraph retrieval and show that its cost is not
substantial compared with the cost of iterative search. We use
triangle enumeration and 2-hop retrieval to implement subgraph
retrieval for maximal clique and k-plex enumerations respectively.

5.2.1. Maximal clique enumeration

For the GP approach, we specify the parameter k in Alg. 5 by
the number of vertices contained by a graph. It is set to be 50. The
maximal execution time per Reduce phase is set to be 300 s. The
workload limit of execution time per Reduce phase is similarly set
for the BK-L approach.

Note that the real graphs as shown in Table 1 can be effi-
ciently processed on a single worker. Therefore, we used the Twit-
ter dataset, whose details are shown in Table 8 for parallel clique
detection. On R-MAT and SSCA graphs, even the BK approach man-
ages to evenly distribute the workload across workers. The parallel
evaluation results on them are similar to what were observed in
sequential evaluation, thus omitted here. Also note that process-
ing the entire graph of the Twitter graph is too time-consuming
on our cluster. Therefore, we randomly choose some vertices
with large degrees on them and enumerate the maximal cliques
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Fig. 3. Evaluation of sequential maximal 2-plex and 3-plex enumeration on R-MAT.

Table 7 Table 9
Runtime of subgraph retrieval for clique enumeration on Twitter. Runtime of subgraph retrieval for 2-plex enumeration on real graphs.
D} D2 D3 D} D3 EuAll  WebGoogle  BerkStan  WikiComm Pokec
Runtime (s) 137 123 135 147 167 Runtime (s) 43 85 92 72 132
Table 8 extremely expensive, in these tasks. The computations on these
Parallel maximal clique detection based on Hadoop on Twitter. vertices thus become parallel performance bottleneck if without
Twitter IV]: 11,316,811 |E|: 85,331,846 dynamic load balancing. The experiments show that both the
Map-Reduce Cycles Runtime (s) BK-L and GP approaches can effectively break the performance
BK BK-L cp BK BK-L cp bottleneck by redistributing the computation on an individual
- vertex across multiple workers. However, it can be observed that
gg } § ; 3239 ‘7“732 42? the GP approach achieves overall better parallel performance than
Ds 1 ) 3 7200 1136 768 the BK-L approach. Compared with BK-L, GP usually generates
H A " . :
D! 1 4 3 ~7200 1407 707 muc.h.smaller traversal trees aqd is ablg to partition big graphs into
D3 1 16 5 ~7200 5455 711 sufficiently small subgraphs with less iterations.

containing them over the entire graphs. The computations on the
vertices with large degrees can be supposed to be representative
and challenging. With the maximal degree of vertices on Twitter
at the scale of 107, we choose the vertices with the degrees of at
least 10°. Totally ten vertices are chosen for each task.

We first report the consumed time of subgraph retrieval in
Table 7. Subgraph retrieval takes between 100(s) and 200(s) on all
the test tasks. It can be observed that the retrieval cost is much less
than the cost of iterative search, which takes time between 500(s)
and 2000(s) as reported in Table 8.

Then, we present the comparative results on iterative search
in Table 8. It can be observed that BK-L performs better than BK
and GP outperforms both of them by considerable margins. Our
experiments showed that the typical BK approach performs very
poorly in many cases (e.g., D‘T1 and D? ). It cannot finish computation
within the 2-hour runtime limit. Closer scrutiny reveals that
there exist some vertices, whose maximal clique computations are

5.2.2. Maximal k-plex enumeration

We evaluate the performance of different approaches in the
cases of k = 2. Note that maximal 2-plex enumeration is compu-
tationally more expensive than maximal clique enumeration and
processing the entire graphs of most real datasets listed in Table 1
takes too long on our cluster. Therefore, on the datasets of EuAll
and WebGoogle, we process the entire graphs. On BerkStan, Wiki-
Comm and Pokec, asin Section 5.2.1, we instead randomly select 10
vertices with large degrees in the graphs and compute their maxi-
mal 2-plexes over the entire graphs. As in Section 5.2.1, our imple-
mentations specify that any graph with no more than 50 vertices is
recursively processed to the end without being redistributed. The
maximal execution time per Reduce phase is set to be 300 s.

The consumed time of subgraph retrieval is reported in Table 9.
We report the retrieval time on all the vertices in the test graphs.
It can be observed that similar to the case of clique enumeration,
the retrieval cost is much less than the cost of iterative search as
reported in Table 10.



Z. Wang et al. / . Parallel Distrib. Comput. 106 (2017) 79-91 89

Table 10
Parallel 2-plex detection based on hadoop on real graphs.

Datasets Map-Reduce Cycles Runtime

BK BK-L GP BK BK-L GP
EuAll 1 4 1 2512 1178 286
WebGoogle 1 >20 3 >7200 >7200 751
BerkStan'” 1 5 2 >7200 1643 587
WikiComm 1 12 4 >7200 4387 1365
Pokec!® 1 6 4 4879 2133 1268

The comparative results on iterative search are presented in Ta-
ble 10. It can be observed that without load balancing, the per-
formance of the BK approach is volatile; it performs very poorly
in many cases (e.g. WebGoogle). Between BK-L and GP, GP out-
performs BK-L by considerable margins. GP traverses considerably
smaller search space and is able to partition big graphs into suf-
ficiently small subgraphs with less iterations. Compared to what
were observed in parallel clique computation, the performance ad-
vantage of GP is more considerable. It achieves the speedups of
over 10x on WebGoogle.

5.3. Parallel evaluation by MPI

We have also implemented the GP approach on MPI, and com-
pared its performance with the state-of-the-art MPI implementa-
tion of parallel maximal clique detection based on BK search [37],
which has been made open-source. The detailed results on real
datasets are presented in Table 11, in which the speedup compares
the parallel runtime with the runtime with only one worker. The
parallel runtime reports the performance of GP and BK running
with 48 workers.

It can be observed that as it is in centralized setting, the per-
formance of BK search is very volatile, sensitive to graph char-
acteristics. In comparison, GP performs better and much more
stably. For instance, on the datasets of Orkut, Aanon and Banon,
GP runs around 10 times faster than BK. On the first three datasets,
GP achieves similar speedups to BK. On Aanon and Banon, GP runs
much faster than BK and it can actually achieve the speedup of
around 7 with only 10 workers. Our experiments showed that in-
creasing the work scale from 10 to 48 can only marginally improve
the parallel performance of GP. Our experiments demonstrated
that both MPI implementations of GP and BK can achieve balanced
workload among the workers.

We also compare the performance of GP and BK on enumerating
large maximal cliques by MPI. The size threshold is set to be 10. The
detailed results are presented in Table 12. It can be observed that
the relative performance of GP and BK is very similar to what was
observed in Table 11. GP outperforms BK by comfortable margins
on most test cases. The exception is on the dataset of WikiTalk: GP
takes more time than BK, but its performance is very competitive.

5.4. Parallelizability evaluation

To evaluate the parallelizability of our GP implementation on
MPI, we run it on the worker clusters of different sizes and track
its performance variation. We set up 5 cluster configurations which

5 T T v
—— WikiTalk -

—@- skitter 7
—A— orkut -

Number of Workers

Fig. 4. Parallelizability evaluation on MapReduce.

have 8, 16, 24, 32 and 40 workers respectively. The performance is
measured in terms of runtime.

The evaluation results of maximal clique enumeration on the
three datasets (WikiTalk, skitter and orkut) are presented in Fig. 4.
It can be observed that on all the tasks, increasing cluster size
can effectively reduce runtime. We also observe that the achieved
speedup increases with runtime. On the task with the longest
runtime (orkut), GP achieves the best speedup: its performance on
40-worker cluster achieves a speedup close to 4 compared with the
result on 8-worker cluster. Our experiments demonstrate that our
GP implementation achieves desirable parallelizability on MPI.

6. Related work

Maximal clique detection. Maximal clique enumeration has been
studied extensively in the literature [5,42,30,40,10,12,11]. Due to
its NP-completeness, existing work focused on efficient search.
Most of the proposed approaches were based on the classical BK al-
gorithm [5], which has been widely reported as being faster than its
alternatives [7,18]. Authors of [ 12] proposed an efficient algorithm,
which was also based on BK search, for maximal clique enumera-
tion with limited memory. Authors of [ 10,11] proposed to speed up
clique detection by indexing the core structures of a special type of
graph called H*-graph. Instead of BK, another approach [44,13,28]
uses the strategy of reverse search. The key feature of this approach
is that it is possible to define an upper bound on their runtime as
a polynomial with respect to the number of maximal cliques in a
graph. Note that focusing on centralized search, the efficient im-
plementations of existing algorithms usually rely on global state
and cannot be easily parallelized. There are also some work [36,35]
studying the closely related problem of detecting maximum clique.
The algorithms they used are however variants of the BK algorithm.

Maximal k-plex detection. The strictness of clique definition might
limit its appeal in applications and has thus motivated the study
of clique relaxations [3]. K-plex is a degree-based relaxation
first proposed in [38]. Maximal k-plex detection is also a NP-
completeness problem and existing work [29] focused on its com-
binatorial optimization. The efficient implementation for maximal

Table 11

Parallel maximal clique enumeration by MPI on real graphs.
Dataset V] |E| Runtime(s) Speedup

GP BK GP BK

WikiTalk 2,394,385 3,016,553 57.57 74.02 26.54 25.26
Skitter 1,696,415 10,489,784 56.66 413.96 22.15 25.32
Orkut 2,997,166 106,349,209 318.53 2673.12 22.60 28.63
Aanon 3,097,165 23,667,394 59.96 675.62 7.01 30.30
Banon 2,937,612 16,183,457 55.55 505.40 6.93 30.86
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Table 12

Enumerating large maximal cliques (size > 10) by MPI on real graphs.
Runtime (s) WikiTalk Skitter Orkut Aanon Banon
GP 5291 53.83 234.94 58.53 51.81
BK 33.65 292.92 688.61 174.17 355.65

k-plex detection in [46] used a variant of the BK algorithm. More
recently, an alternative algorithm was proposed in [4]. It runs in
polynomial delay for a constant k and incremental FPT delay when
k is a parameter.

Parallel solutions. Due to the increasing popularity of the MapRe-
duce framework, the solutions have been proposed to parallelize
maximal clique [47,27,15] (k-plex [46]) detection on MapReduce.
They proposed to distribute the vertices across workers and com-
pute every vertex’s maximal cliques (k-plexes) in parallel. On the
core algorithm for efficient search, they however used the BK algo-
rithm or its variants. As shown in our experimental study in Sec-
tion 5.2, their parallel performance may be severely limited by the
expensive computation on an individual vertex. Authors of [48]
proposed a fault-tolerant parallel solution for maximum clique de-
tection based on MapReduce. It also used the BK algorithm for ef-
ficient search. A parallel solution for maximal clique enumeration
based on MPI has been proposed in [37]. It proposed a dynamic load
balancing technique that enabled an idle worker to “steal” work-
load from another busy worker. As we showed in Section 5.3, lim-
ited by the efficiency of BK search, its performance was still quite
sensitive to graph characteristics.

Detection of other dense graph structures. Orthogonal to ours,
many works extended the definition of clique to dense subgraph
structures other than k-plex (e.g. maximal cliques in an uncer-
tain graph [51], cross-graph quasi-cliques [25], k-truss [24], and
densest-subgraph [43]), and studied their applications. The ex-
isting algorithms for these problems are centralized. The search
process of these dense structures is usually NP-complete, thus
computationally expensive over massive real graphs. However, ef-
ficient parallelization of their search processes over a machine
cluster remains an open question.

7. Conclusion and future work

In this paper, we have proposed a novel approach based on bi-
nary graph partitioning to address the problem of maximal clique
and k-plex enumeration over graph data. Compared with previous
approaches, it achieves smaller search space and is also inherently
more parallelizable. Its better parallelizability enables more effec-
tive load balancing and ultimately results in more efficient par-
allel performance. Our extensive experiments have validated its
efficacy.

Future work can be pursued in two directions. Firstly, many
maximal cliques may be highly overlapping in real-world net-
works. There is a need to find diverse maximal cliques with few
overlapping vertices on these graphs. Therefore, it is interesting
to investigate whether the proposed approach can be extended to
efficiently search for diverse maximal cliques over graph data. Sec-
ondly, as mentioned in Section 6, there are currently many propos-
als to define dense subgraphs by the structures other than k-plex.
How to efficiently parallelize the search process of these dense sub-
graphs over large graphs is also an interesting challenge.
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