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Abstract MapReduce, a parallel computational model, has
been widely used in processing big data in a distributed clus-
ter. Consisting of alternate Map and Reduce phases, MapRe-
duce has to shuffle the intermediate data generated by map-
pers to reducers. The key challenge of ensuring balanced
workload on MapReduce is to reduce partition skew among
reducers without detailed distribution information on mapped
data.

In this paper, we propose an incremental data alloca-
tion approach to reduce partition skew among reducers on
MapReduce. The proposed approach divides mapped data
into many micro-partitions and gradually gathers the statis-
tics on their sizes in the process of mapping. The micro-
partitions are then incrementally allocated to reducers in mul-
tiple rounds. We propose to execute incremental allocation
in two steps, micro-partition scheduling and micro-partition
allocation. We propose a Markov Decision Process (MD-
P) model to optimize the problem of multiple-round micro-
partition scheduling for allocation commitment. We present
an optimal solution with the time complexity of O(K · N2),
in which K represents the number of allocation rounds and N
represents the number of micro-partitions. Alternatively, we
also present a greedy but more efficient algorithm with the
time complexity of O(K · NlnN). Then, we propose a Min-
Max programming model to handle the allocation mapping
between micro-partitions and reducers, and present an effec-
tive heuristic solution due to its NP-completeness. Finally,
we have implemented the proposed approach on Hadoop, an
open-source MapReduce platform, and empirically evaluated
its performance. Our extensive experiments show that com-
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pared with the state-of-the-art approaches, the proposed ap-
proach achieves considerably better data load balance among
reducers as well as overall better parallel performance.

Keywords incremental partitioning, data balance, MapRe-
duce

1 Introduction

MapReduce [1] is an enormously popular simplified parallel
data programming model for big data analytics. There are
currently many distributed systems built on MapReduce [2],
including Hadoop [3], a popular open-source implementa-
tion. A MapReduce program consists of alternate Map and
Reduce phases. In the Map phase, mappers transform input
tuples into key-value pairs, which are then divided into par-
titions and shuffled to reducers. In the Reduce phase, each
reducer executes specified operations on the partitions allo-
cated to it.

It has been pointed out [4] [5] that workload unbalance
is a common phenomenon on MapReduce. We observe that
the key challenge of ensuring workload balancing among re-
ducers is partition skew. The basic strategy, which is the de-
fault solution implemented on Hadoop, is to specify a hash
or range partition function before mapping. The function
can usually result in each reducer receiving roughly the same
number of key blocks. However, due to size skew of key
blocks, it can not ensure data load balance among reduc-
ers. Actually, without detailed distribution information on
mapped data, it is nearly impossible to predefine a partition
function that can balance data load in the Reduce phase.

Currently, there exist two approaches to address the short-
coming of the basic strategy. Some work [6] proposed to
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first sketch data distribution by pre-sampling input tuples, and
then use the obtained information to design a balanced par-
tition function. This approach requires an additional run of
mapping on sampled data. Moreover, its effectiveness de-
pends on accurate sampling, which by itself remains a chal-
lenging task. The other approach [7] [8] [9] [10] [11] trades
slow shuffle start for distribution statistics garnering. It first
defines a tentative partition function to produce arbitrary-
sized partitions and gradually gathers the statistics on par-
tition sizes in the mapping process. Once the mapping task
is completed up to a preset progress point, it then adjusts the
partitioning plan based on the garnered distribution informa-
tion. In this approach, mapped data are actually allocated
to reducers at adjustment point. Note that the basic strate-
gy as implemented on Hadoop can start to shuffle mapped
data once the first mapper finishes its job. In contrast, this
approach can only begin to shuffle mapped data after adjust-
ment point. Since mapped data allocation occurs in a single
round, the challenge of implementing this approach is to de-
termine the optimal adjustment point. If the adjustment point
is set to be at an early stage of mapping, the gathered distribu-
tion information may not be accurate. On the other hand, if it
is set to be later, data shuffling has to be delayed accordingly.
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Fig. 1: Illustration of Slow Reduce Job Start

We illustrate the shortcoming of the single-round alloca-
tion approach by a comparative experiment, as shown in Fig-
ure 1. The naive Hadoop approach starts to shuffle data im-
mediately after the first mapper finishes its job. In contrast,
the single-round approach starts to shuffle data only after all
the mappers finish their jobs. The X-axis represents the num-
ber of mapper rounds required by a mapping task. The Y-axis
represents the total time consumed by the Map and Shuffle
phases. In the experiment, each round has totally 10 mappers
running simultaneously, each of which processes 64M data.
It can be observed that the single-round approach can con-
sume considerably more time than the naive approach, and
its performance disadvantage tends to deteriorate with the in-

creasing number of required mapper rounds.
To better manage the trade-off between sampling accuracy

and early reduce job start, this paper proposes a novel incre-
mental allocation approach. Our major contributions can be
summarized as follows:

• We propose an incremental data allocation approach to
reduce partition skew on MapReduce. It first divides
mapped data into many micro-partitions while gradual-
ly gathering the statistics on their sizes in the process of
mapping, and then allocates them to reducers in multiple
rounds. Compared with existing techniques, it provides
with a more effective mechanism to manage the trade-
off between sampling accuracy and early shuffle start.
On one hand, it enables immediate shuffling after the
first mapper finishes its job. On the other hand, partition
skew resulting from inaccurate sampling can be correct-
ed in later rounds of micro-partition allocation. (Section
4)

• We propose to execute incremental allocation in two
steps, micro-partition scheduling and micro-partition al-
location. Provided with multiple allocation decision
points, the problem of micro-partition scheduling choos-
es the micro-partitions for allocation commitment at
each decision point, and the problem of micro-partition
allocation maps committed micro-partitions to reducer-
s. For micro-partition scheduling, we propose a Markov
Decision Process (MDP) model and present an optimal
algorithm with the time complexity of O(K · N2), in
which K represents the number of allocation rounds and
N represents the number of micro-partitions. We also
present a greedy but more efficient algorithm with the
time complexity of O(K · NlnN). For micro-partition
allocation, we propose a MinMax programming model
and present an effective heuristic solution due to its NP-
completeness. (Section 5&6)

• We implement the proposed incremental approach on
Hadoop (Section 7) and compare its performance with
that of the state-of-the-art solutions. Our extensive ex-
periments show that it achieves considerably better data
load balance among reducers as well as overall better
parallel performance. (Section 8)

The rest of this paper is structured as follows: Section 2
reviews related work. Section 3 presents the preliminaries
and gives an overview on the existing solutions. Section 4
introduces the overview of incremental approach. Section 5
presents the solution for micro-partition scheduling. Section
6 presents the solution for micro-partition allocation. Section
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7 presents the implementation on the native Hadoop. Section
8 presents the experimental results. Finally, we conclude our
work with Section 9.

2 Related work

Since the MapReduce programming model was first proposed
[1], the problem of workload unbalance has been widely rec-
ognized [12] [13] [14] [5] [6] [15] [16] [17]. The existing
workload balancing techniques proposed for traditional par-
allel systems [18] [19] optimized job and task scheduling
to minimize the parallel execution time. The Map-Shuffle-
Reduce phase design renders them unfit for the MapReduce
framework.

The simple approach for reducing partition skew [20] [21]
[22] decoupled the Map and Shuffle phases. It only begins to
shuffle data after all the mappers finish their jobs. Such an
approach suffers from slow reduce job to start. An improved
approach was based on sampling. Sampling can be executed
by an independent process before Map phase [6]. Alterna-
tively, it can be integrated into Map phase. [23] sampled the
input data in the process of mapping and used an adaptive
partitioner to generate balanced data at a specific time point
in the midst of mapping. Similarly, [24] added a separate
sampling thread to gain the distribution in the Oracle Loader
for Hadoop. [25] selected parts of input splits as sampling da-
ta to evaluate the whole input set. The Closer system [9] [10]
also inserted sampling into the map function. More recently,
Libra [11] proposed an improved sampling method and used
range partition to avoid the skewed partition, the core contri-
bution is allocating one key to different reducers for part of
applications. Complementary to these work, [7, 8] proposed
to sample the input data by blocks instead of tuples.

However, the common drawback of the sampling-based
techniques is that accurate sampling remains a challenging
task especially when only a small part of input data can be
sampled [26]. Further, allocation plan adjustment in the midst
of mapping would delay the shuffle start point. Therefore,
in practical implementation, it remains challenging to set an
adjustment point that can optimize the trade-off between da-
ta load balance and early reduce start. The incremental ap-
proach we proposed in this paper can instead provide with a
flexible mechanism to better manage their trade-off. Its effec-
tiveness does not depend on accurate sampling either.

Workload unbalance among reducers is usually addressed
in two phases. The first one is to ensure workload balancing
if possible before the jobs start. Our work on partition skew

falls into this phase. The second one instead concerns about
reallocating the workload among computing nodes in the run-
ning process of jobs. For dynamic workload balancing in the
midst of Reduce phase, the typical approach [26] [27] pro-
posed to identify idle computing nodes and reallocate some
workload on heavy nodes to the idle ones. Its effectiveness,
however, to a large extent depends on accurate estimation of
the remaining processing time on computational nodes.

There has been some work on [28] [29] studying how
to handle data skew in parallel join on MapReduce. Since
the proposed incremental approach aims to address partition
skew, it can obviously be used to handle the skew of any re-
duce operation (including join). As demonstrated by these
work, the join operation enables specific optimization tech-
niques, which are however beyond the scope of this paper.

There is also some work complementary to ours. [10] pro-
posed the method for estimating the cost of the tasks that are
distributed to reducers based on a given cost model. The
SkewReduce system [30] used user-defined cost functions
to estimate the computational cost of partitions. To ensure
workload balancing, the incremental approach also requires
estimating the computational cost of micro-partitions. It can
use these proposed estimation techniques to optimize perfor-
mance in practical implementation.

3 Preliminaries
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Fig. 2: Naive Approach on Hadoop

A MapReduce program consists of alternate Map and Re-
duce phases. In the Map phase, each mapper loads S plits
from local HDFS and maps them into < key, value > pairs.
The mapped data are divided by a hash function into parti-
tions. Each partition corresponds to a reducer. Once a map-
per finishes its job, Hadoop starts to shuffle partitions to their
corresponding reducers. An example of data flow is shown
in Fig.2, in which mapped data are divided into two parti-
tions, P0 and P1. By default, the hash function is set to be
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key%R, in which R is the total number of reducers. Suppose
that each key corresponds to a micro-partition. The default
function can usually ensure that each reducer receives a bal-
anced number of micro-partitions. However, due to size skew
of micro-partitions, it does not necessarily result in balanced
workload among reducers.
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Fig. 3: Single-round Allocation Approach

An improved approach [9], as shown in Figure 3, sched-
ules the allocation of mapped data in the process of map-
ping. Mapped data are first tentatively grouped into partitions
which are assigned to reducers. The resulting plan is tentative
in that it may be adjusted later. In the process of mapping, the
statistics on partition sizes are simultaneously gathered. After
the job of mapping progresses to a preset time point, which is
also referred to as the adjustment point, the tentative plan is
then adjusted based on the gathered distribution information.
At this point, the default partition function would be amend-
ed as a new partition function to split the heavy partitions.
Then, the finished mappers could shuffle after splitting the
local heavy partitions. But for the unfinished mappers, they
have to group tuples by the amended partition function. For
instance, as shown in Figure 3, the partition P1 is split into
P1a and P1b at the adjustment point which is defined as the
second round of mapper is finished. After that,P1b is allocat-
ed to R0 instead of its original destination R1. The finished
mappers M0 and M1 could begin to be shuffled to reducers.
And for M2, its data must be partitioned with the amended
partition function. And with this rule, as shown in Figure 3,
its data is partitioned into three parts: P0, P1a and P1b.

4 Overview of The Incremental Approach

4.1 Overview

To enable flexible management on the trade-off between sam-
pling accuracy and early shuffle start, we propose to allocate
mapped data to reducers in multiple rounds. The process of
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Fig. 4: Incremental Allocation Approach

incremental allocation is sketched in Figure 4. The mapped
data are first divided into many micro-partitions, the number
of which is usually significantly larger than the number of
reducers. The workload statistics of micro-partitions are con-
tinually gathered and sent to an allocation decision maker in
the process of mapping. The generated micro-partitions are
then allocated to reducers incrementally in multiple rounds.
Instead of using a single allocation decision point, the incre-
mental approach sets a series of discrete time points in the
mapping process as allocation decision points. At each deci-
sion point, some of uncommitted micro-partitions are chosen
and allocated to reducers. In the example shown in Figure 4,
the micro-partitions, {P0,P1,P2}, are allocated at the decision
point D1, P3 and P4 are allocated at D2, and P5 is allocated
at D3. The discrete decision points can be set according to
mapping progress: each decision point corresponds to a per-
centage up to which the map job has been completed. For
instance, the decision points can be set to be {T1,. . .,T10}, in
which Ti represents the time point where (i · 10)% of the map
job has been completed.

The ultimate purpose of workload balancing on Hadoop
is to optimize parallel performance. To this aim, the prob-
lem of incremental allocation has to consider the cost of da-
ta shuffling as well as workload balancing among reducers.
Suppose that the intermediate data generated by mappers are
divided into N micro-partitions. Also suppose that there are
total M reducers (N � M) and there are total K discrete de-
cision points in the process of mapping, which are denoted
by {T1,. . .,TK}. The solution of incremental allocation con-
sists of a series of allocation actions. Given a decision point
Ti, an action allocates some uncommitted micro-partitions to
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reducers. Note that all the N micro-partitions should be allo-
cated to reducers and each of them should be allocated only
once. The objective function of the optimization problem can
be represented by:

min max
j

( fs(R j) +
∑

i

(ai j · fc(S i))) (1)

in which S i denotes the size of the ith micro-partition, ai j

denotes the mapping between micro-partitions and reducers
(ai j = 1 if the ith micro-partition is allocated to the jth reduc-
er, and ai j = 0 otherwise), R j denotes the jth reducer, fs(R j)
represents the total shuffling cost at the reducer R j and fc()
represents the computational cost of a micro-partition.

In this paper, we focus on handling the reduce-side par-
tition skew, and thus assume that the workload of a micro-
partition can be accurately estimated beforehand by its size.
It can be observed that otherwise, workload skew has to be
balanced in the midst of the Reduce phase. For ease of p-
resentation, we use a micro-partition’s size and its compu-
tational workload interchangeably in the rest of this paper.
On MapReduce, the shuffle job interleaves with the map job.
Therefore, the progress of a shuffle job at a reducer depend-
s on the progress of the map job, the sizes of the micro-
partitions allocated to the reducer, and the micro-partitions’
shuffle start points. We also note that the statistics of micro-
partition sizes (S i) are incrementally garnered. Their estima-
tions can fluctuate wildly in the process of mapping. There-
fore, we propose to execute incremental allocation in two
steps, micro-partition scheduling and micro-partition alloca-
tion. They are described as follows:

Problem 1. Micro-partition Scheduling. Given a series of
decision points and a set of micro-partitions, P, the prob-
lem of micro-partition scheduling refers to selecting a subset
of micro-partitions in P for allocation commitment at each
decision point. A feasible solution should satisfy that each
micro-partition is committed once and only once.

Problem 2. Micro-partition Allocation. Given a decision
time point Ti and a set of committed but unallocated micro-
partitions, Pu, the problem of micro-partition allocation
refers to allocating the micro-partitions in Pu to reducers.
A feasible solution should satisfy that each micro-partition is
allocated to one and only one reducer.

The solution to Problem 1 chooses the micro-partitions for
allocation commitment at decision points. Its objective is to
optimize the trade-off between workload balancing and early
shuffle start. The solution to Problem 2 allocates the commit-
ted micro-partitions to reducers. Its objective is to achieve

balanced workload among reducers. We formulate them and
study their optimization in Section 5 and 6 respectively.

5 Micro-partition Scheduling

In this section, we propose the algorithms based on Markov
Decision Process (MDP) to solve the optimization problem
of micro-partition scheduling.

5.1 The MDP Model

A standard MDP model is a 5-tuple (S , A, P,R, γ), where S
denotes a finite set of states, A denotes a finite set of ac-
tions, P denotes the set of state transit probabilities upon ac-
tions, R denotes the state transit rewards and γ denotes the
discount factor representing the difference in importance be-
tween present and future rewards. For ease of presentation,
we use As to denote the finite set of actions available at a s-
tate s, Pa(st, st+1) denoting the probability of state s at time
t transiting to state st+1 at time t + 1 as a result of the action
a, R(st, st+1) denoting the immediate reward of the state tran-
sition from st to st+1. The core problem of MDP is to find
a “policy” for the decision maker: a function that specifies
the action that the decision maker will choose when in state
s. The goal is to choose a policy that will maximize some
cumulative function of the random rewards, typically the ex-
pected discounted sum over a potentially infinite horizon:

∞∑
t=0

γt · R(st, st+1) (2)

where 0 < γ ≤ 1.
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Fig. 5: The General MDP Model

We formulate the micro-partition scheduling problem as a
MDP. Suppose that there are total N micro-partitions and K
decision points. The state is represented by 2-tuple, s(Vt, t),



6
Zhuo Wang: Reducing Partition Skew on MapReduce: An Incremental Allocation Approach

D1 D2Decision Point

Initial State
Final State

<1, 1>

<0, 0>

<1, 0>

<1, 1>

<0, 0>

<0, 1>

<1, 1>

<1, 0>

<0, 0>

<0, 1>

Fig. 6: An Example MDP

where Vt is a N-dimensional allocation vector and t repre-
sents a decision point. In Vt, {v1,. . .,vN}, each dimension cor-
responds to a micro-partition, and vi = 1 if its corresponding
micro-partition has been committed for allocation at time t,
otherwise vi = 0. The action corresponds to commiting some
uncommitted micro-partitions for allocation. The state tran-
sit can only occur from time t to time t + 1. In a state transit
from (Vt, t) to (Vt+1, t + 1), the value of vi remains to be 1 at
time t + 1 if vi = 1 at time t. Committing a micro-partition
for allocation at time t would change the value of its vi from
0 at time t to 1 at time t + 1. As a result of a commitment ac-
tion at time t, a state s(Vt, t) would deterministically transit
to another state s(Vt+1, t + 1).

The general MDP model is shown in Figure 5. The ini-
tial state is denoted by s(V0, 0). Since every micro-partition
is initially uncommitted, every dimensional value vi in V0 is
equal to 0. The final state is denoted by s(VK+1, K + 1). S-
ince every micro-partition has to be committed for allocation
at the end of the planning process, every dimensional value
in VK+1 is equal to 1. At any decision point ti (1 ≤ i ≤ K),
the total number of commitment states of Vi is equal to 2N . A
MDP example with 2 micro-partitions and 2 decision points
is also shown in Figure 6. The colored path represents a fea-
sible solution of state transfer, which allocates P1 at D1 and
P2 at D2.

It is observed that committing a micro-partition for alloca-
tion would enable its immediate shuffling, but also reduce the
opportunities for later balancing adjustment. Therefore, the
definition of the reward function has to consider the trade-off

between these two conflicting factors. We define the reward
function as

Rat (st, st+1) =
W t

c

W
·

N t
u

N
(3)

in which W denotes the total size of all the micro-partitions,

W t
c denotes the total size of the micro-partitions committed at

time t, N denotes the total number of micro-partitions and N t
u

denotes the total number of micro-partitions remaining un-
committed after t. In Eq. 3, the first part of (W t

c/W), which
corresponds to the size percentage of the micro-partitions
committed at t to all the micro-partitions, measures the bene-
fit of early shuffling. The second part of (N t

u/N) represents
the penalty of reduced balancing opportunities as a result
of micro-partition commitment. Committing more micro-
partitions at a decision point t would result in an increased
value of W t

c but a decreased value of N t
u. It is worthy to point

out that both extreme choices, committing no micro-partition
or committing all the available micro-partitions at a decision
point, would result in the minimal reward of 0.

We consider the discount of a future reward as a penalty of
retrieving more accurate sampling results. In simple random
sampling method, the sampling accuracy increases with the
sample size. And the actual error is square root with the sam-
ple size [31]. In this paper, we borrow the definition of actual
error and support sampling accuracy is square root with the
sample size. We suppose the process speed is a constant for
each mapper. And the interval time is the same between each
adjacent decision point. So the total size of retrieved sample
at the last decision point (tK) is K times the sample size re-
trieved at the first decision point (t1). Correspondingly, the
sampling accuracy achieved at tK is

√
K times the sampling

accuracy achieved at t1. Combining formula Eq. 2 we have

γK−1 ·
√

K = 1. (4)

Correspondingly, the value of the discount factor (γ) is spec-
ified by

γ = K−
1

2(K−1) . (5)

5.2 An Optimal Algorithm

The standard optimal algorithm for MDP repeats two types
of computations in same order for all the states until no fur-
ther state transit takes place. They are recursively defined as
follows:

V(s) :=
∑

s′
Pπ(s)(s, s′)

(
Rπ(s)(s, s′) + γV(s′)

)
; (6)

π(s) := arg max
a

∑
s′

Pa(s, s′)
(
Ra(s, s′) + γV(s′)

) . (7)

At the end of the algorithm, π will contain the solution
and V(s) will contain the discounted sum of the rewards to be
earned (on average) by following that solution from state s.
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In the proposed MDP, the number of probable states is
O(K · 2N), in which K and N denote the number of decision
points and micro-partitions respectively. However, the num-
ber of the states probably traversed by an optimal solution can
be shown to be only O(K · N). Given a decision point ti, sup-
pose that the total number of uncommitted micro-partitions
is Ni. We can prove that the action taken at each deci-
sion point,{ti,ti+1,. . .,tK}, as specified by an optimal solution,
would commit j top-sized uncommitted micro-partitions, in
which 0 ≤ j ≤ Ni. In other words, the optimal action always
commits the largest uncommitted micro-partitions at any de-
cision point. The optimal number of micro-partitions com-
mitted at each decision point, however, needs to be further
determined. We have the following lemma:

Lemma 1. In the proposed MDP model, the action is taken at
any decision point as specified by an optimal solution always
commits the set of micro-partitions consisting of the largest
available ones.

Proof. Suppose that in an optimal solution S L1, the ac-
tion at a decision point ti commits a set of micro-partitions,
Pti ,which are not the largest available ones. Then, there ex-
ists a micro-partition p uncommitted at ti whose size is larger
than a micro-partition p′ in Pti (|p| > |p′|). We also suppose
that p′ is committed at t j (ti < t j) in S L1. We construct an
alternative solution S L2. The solution S L2 takes the same
actions as S L1 except that it commits the micro-partition p′

at ti and p at t j. According to the definition of the reward
function, we have

Ri, j(S L1)
Ri, j(S L2)

=
W1i

c · N
1i
u + γ j−i ·W1 j

c · N
1 j
u

W2i
c · N2i

u + γ j−i ·W2 j
c · N

2 j
u

(8)

in which Ri, j(S L1) represents the sum reward that S L1

achieves at ti and t j, and W1i
c represents the sum size of micro-

partitions committed at ti in S L1, N1i
u represents the number

of micro-partitions remaining uncommitted after ti in S L1.
Note that N1i

u =N2i
u , N1 j

u =N2 j
u and N1i

u >N1 j
u . We also have

W1i
c −W2i

c = W2 j
c −W1 j

c = |p′| − |p| < 0. (9)

Therefore, we have

Ri, j(S L1) < Ri, j(S L2). (10)

Note that at any decision point other than ti and t j, the solu-
tions S L1 and S L2 achieve the same rewards. Therefore, S L2

achieves a total reward larger than that of S L1. Contradiction.
�

According to Lemma 1, the optimal algorithm only needs
to consider committing the top-k largest uncommitted micro-
partitions at each decision point. Therefore, we have the re-
cursive reward function as follows:

R(st−1) = max
at−1
{Rat−1 (st−1, st) + γ · R(st)} (11)

in which R(st−1) represents the maximal reward that the state
st−1 can receive at the decision point t − 1, at−1 represents the
action of committing top-k largest available micro-partitions
at t− 1, st represents the state at t as a result of the action at−1

at st−1. The optimal algorithm, based on dynamic program-
ming, recursively computes R(si) beginning with the initial
state s0. In the process, the maximal reward of every prob-
able state is remembered to avoid redundant computations.
We have the observation that the number of probable states at
each decision point is bounded by O(N). As a result, the total
number of probable states are bounded by O(K · N). We also
observe that in Eq. 11, Rat−1 (st−1, st) can be computed in an
incremental way. The computation of Eq. 11 therefore takes
O(N) time. Therefore, we have the following theorem:

Theorem 1. The optimal dynamic programming algorithm
has the space complexity of O(K ·N) and the time complexity
of O(K · N2)

The purpose of the designed MDP model is to choose a se-
ries of micro-partition commitment actions at decision points
such that the cumulative sum of rewards is maximal. An opti-
mal MDP plan made at the first decision point t1, is based on
the retrieved sampling results up to t1. In principle, it can also
specify the optimal actions taken at every other decision point
besides t1. However, its effectiveness depends on the assump-
tion that the estimated sizes of micro-partitions remain stable
throughout the mapping process. Unfortunately, their estima-
tion sizes may instead fluctuate wildly in practice. Therefore,
the optimal MDP plan needs to be recomputed at each deci-
sion point after t1. At a decision point ti, the planner would
commit the micro-partitions as specified by the computed op-
timal plan at ti. The state at ti would then transit to another
state at ti+1 correspondingly.

5.3 A Greedy Algorithm

To reduce the MDP optimization overhead, we propose
a greedy but more efficient algorithm for micro-partition
scheduling.

At each decision point t, the greedy algorithm always
chooses to commit the top-k largest uncommitted micro-
partitions such that the immediate reward of state transit from
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st to st+1 is maximized. In addition, the sorting would take
O(NlnN) time. The algorithm is sketched in Algorithm 1. Pu

denotes the set of uncommitted micro-partitions before the
decision point t. Pc denotes the set of micro-partitions in Pu

selected for allocation commitment at t.

Algorithm 1 A Greedy Algorithm
Require: t,Pu(the set of uncommitted micro-partitions)
Ensure: Pc(a subset of Pu)

1: Sort the h micro-partitions in Pu, {p1,. . .,ph}, by size in
the decreasing order;

2: Pc = ∅; //the set of committed micro-partitions
3: w=0; // the total weight of the committed micro-

partitions
4: k=1; // the numbers of committed micro-partitions at

each decision point
5: R=0; // total rewards of the committed micro-partitions

at each decision point
6: while k ≤ h do
7: w=w+|pk |;
8: R’= w

W ·
h−k
N ;

9: // commit the micro-partition whose reward could in-
crease the total reward

10: if R′ ≥ R then
11: Insert pk into Pc;
12: R=R’;
13: k=k+1;
14: else
15: Break;
16: end if
17: end while

On the time complexity of Algorithm 1, we have the fol-
lowing theorem:

Theorem 2. The greedy algorithm as presented in Algorith-
m 1 has the time complexity of O(K · NlnN).

5.4 Empirical Validation

This subsection empirically validates the effectiveness of the
proposed MDP model. We use the synthetic data satisfying
the Zipf-γ distribution in empirical evaluation. Its genera-
tor [32] uses the parameter of γ, which presents the value
of the exponent characterizing the distribution, to control the
skew extent: a larger value means a more skewed distribution.
We totally run 5 rounds of mappers and each round simul-
taneously runs 10 mappers. Each mapper processes 64MB
data.

The detailed experimental results are presented in Fig-
ure 7. The X-axis represents the decision points. The Y-
axis represents the number of micro-partitions committed at
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Fig. 7: Empirical Validation of MDP

each decision point. It can be observed that the optimal al-
gorithm and the greedy one perform very similarly. In both
cases, most micro-partitions are committed at several initial
decision points. Generally (but with exceptions), the number
of committed micro-partitions decreases with time. The dif-
ference is that the plan generated by the greedy algorithm is
slightly more aggressive: it commits more micro-partitions
in the first two rounds. According to the experimental result-
s, most micro-partitions can begin to be shuffled at the early
stage of the map phase and only some smallest-sized micro-
partitions would be committed at the later stage. These results
demonstrate that the MDP plan is effective in balancing the
trade-off between reducing partition skew and early reduce
start.

It is also interesting to observe that the MDP model has a
desirable property: as the value of s increases, which means
the distribution becoming more skewed, the scheduling plan
would become more conservative. In other words, in the case
of more skewed distribution, the MDP plan would reserve
more micro-partitions for later commitment. For instance,
when s = 0.5, the optimal MDP plan commits 35 micro-
partition at the first decision point. In comparison, if s = 0.9,
it commits only 25 micro-partitions at the first decision point.

6 Micro-Partition Allocation

We formulate the problem of micro-partition allocation at a
decision point t as a generalized multiprocessor scheduling
problem [33]. Suppose that at t, the initial workload already
allocated to the ith (1 ≤ i ≤ M) reducer is Li. We also
suppose that according to the MDP plan, there are total h
micro-partitions supposed to be committed for allocation at t,
whose set is denoted by Pc. At the decision point t, the opti-
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mization problem of micro-partition allocation is to allocate
these h micro-partitions to M reducers such that each reduc-
er achieves a balanced load. We use the variants xi j to denote
the mapping between the micro-partitions in Pu and reducers:
xi j = 1 if the ith micro-partition is allocated to the jth reducer,
and xi j = 0 otherwise. The micro-partition allocation prob-
lem is an optimization problem which can be formulated as
follows:

min max
j
{L f

j } (12)

s.t. ∀1 ≤ i ≤ h,
∑

1≤ j≤M

xi j = 1,

∀1 ≤ j ≤ M, L f
j = L j +

∑
i

(xi j · ec
i )

in which ec
i denotes the estimated size of the ith micro-

partitioin in Pu and L f
j denotes the estimated total size of

micro-partitions allocated to the jth reducer.

Theorem 3. The micro-partition allocation problem is NP-
complete.

Proof. Multiprocessor scheduling problem (MSP) is an op-
timization problem, that was proved NP-complete by J.D.
Ullman in 1975 [33]. This problem is expressed as that
nonpreemptively scheduling n independent tasks on m iden-
tical parallel processors with the objective of minimizing
the "makespan" T . We take an instance of multiprocessor
scheduling as: Set S of tasks, number m ∈ Z of processors,
length l(s) ∈ Z for each s ∈ S , and a deadline D ∈ Z. The ques-
tion is "Is there an m-processor schedule for S that meets the
overall deadline D ?".

And we also take an instance of micro-partition allocation
problem (MAP) as: Set S ′ contains n′ micro-partitions, num-
ber m′ ∈ Z′ of Reducers, the weight for each micro-partition
is l′(s′) ∈ Z for each s′ ∈ S ′, and the maximal weight of Re-
ducers is limit as D′. The question is "Is there an m′-Reducers
allocation plan for S ′ micro-partitions, which make the max-
imal weight of Reducers to meet the limit weight D′ ?" .

First, the micro-partition allocation problem is NP. Be-
cause we could verify the maximal weight of any solution
whether it is larger than D′ in polynomial time.

Next, we are going to reduce the known NP-complete
problem MSP to the new one MAP in polynomial time. We
transform the tasks to the micro-partitions and Reducers to
the processors. And the length function l(s) can be linearly
transformed to the weight function l′(s′). Therefore, we could
transform the input of MSP to the input of MAP in polyno-
mial time. Under the inputs, supposed there was a solution

using the cost function l(s) in MSP, that the solution must
be a solution using the cost function l′(s′) in MAP. And the
reverse is true. So we reduced the instance of MSP to MAP.

According to the above, we conclude that the micro-
partition allocation problem is NP-complete. �

Therefore, we use the classical LPT (Largest Processing
Time first) algorithm, which was originally proposed for the
multiprocessor scheduling problem, to solve it. With the ap-
proximation ratio of 4/3, the LPT algorithm has been empiri-
cally shown to be able to achieve good performance [34, 35].
It first ranks the micro-partitions in the decreasing order of
their sizes, and then allocates a micro-partition to a reducer
with the smallest data load one by one.

7 Implementation on Hadoop

In this section, we describe the details of implementing our
method on the native Hadoop.

The main implementation of allocating partitions to reduc-
ers on the native Hadoop is shown as the blocks without the
dotted-line in Fig.8. On the native Hadoop, after a mapper is
finished, store the temporary data and write each partition’s
index-address in MapOutputFile on local. And send the "fin-
ished" message to JobTracker in Heartbeat. After JobTracker
gets this message, and randomly allocates one partition to a
reducer by sending one index-address message in Heartbeat.
For each launched reducer, it can acquire the allocated parti-
tion’s message and store it in LocalPartition on local and calls
Read() function to pull the finished mapper’s data. As reading
is multi-thread, each mapper’s index is stored in MapOutput-
Locations. Once all mappers are finished, reducers can run
the Reduce() function.

For our method, we need to develop three function mod-
ules and four data structures on the native Hadoop, which are
the dotted-line blocks in Fig.8 . Compared with the native im-
plementation, our multiple allocation rounds strategy is more
complex. While a mapper is executing, instead of writing
< key, value > pairs into buffer directly, each pair would be
processed by Sample(). Sample() is used to describe the dis-
tribution of micro-partition by summarizing the total number
of keys which have the same micro-partition value. After that,
the distribution is stored in LocalSamplingTable in memory.
At each decision point, TaskTracker submits its own Local-
SamplingTable to JobTracker in Heartbeat. And then, Job-
Tracker would update GlobalSamplingTable by summering
all LocalSamplingTable. Now, the distribution of all pro-
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Fig. 8: The Implementation in Native Hadoop

cessed data is stored in GlobalSamplingTable. So JobTrack-
er can run DecisionModel() to make an allocation plan by
running Alg. 1 and store the plan in GlobalAssignPlan. In
the next Heartbeat, JobTracker pushes the current GlobalAs-
signPlan to TaskTracker. When TaskTracker receives a new
plan, it can only sift micro-partitions allocated to it and store
them in LocalAssignPlan in local memory. At each decision
point, AddNewP() would add new allocated micro-partitions
into LocalPartition. After that, like the native Hadoop, the
reducers would wait for the finished mapper’s data to run Re-
duce() function.

8 Experimental Evaluation

In this section, we empirically evaluate the performance of
the proposed incremental approach, which is denoted by
IPS (Incremental micro-Partition Scheduling), by the com-
parative study. We compare its performance with that of
three alternatives: the native approach implemented on the
open-source Hadoop , the Closer approach [9] and Libra
approach [11]. The Closer approach essentially allocates
micro-partitions to reducers in a single round based on partial
size estimation results. In this comparative study, we set the
adjustment point of Closer to be the time points when 20%
or 80% of mapper jobs have been completed. The points of
20% and 80% represent the early and later adjustment points
commonly used in practical implementation respectively. In
Libra, we sample 20 percent of the map tasks. In IPS, we set
the default amplification coefficient, which refers to the times
the number of micro-partitions is to the number of reducers

(or N/M), to be 50. And the number of decision points is
10. Since the optimal and the greedy algorithms for micro-
partition scheduling, as presented in Section 5, perform very
similarly, we present the performance of IPS with the greedy
scheduling algorithm in our comparative study.

We use one synthetic data set and two real data sets, whose
details are presented in Table 1. The synthetic data set satis-
fies the Zipf distribution. Its generator [32] uses the parameter
of γ, which presents the value of the exponent characterizing
the distribution, to control the skew extent: a larger value
means a more skewed distribution. The two real data sets are
BTS [36] and UK-2002 [37]. The BTS data set records the
departure and arrival times reported by U.S. air carriers. The
UK-2002 data set records a web page graph resulting from
a 2002 crawl of the UK domain performed by UbiCrawler.
We run the simple WordCount algorithm on the Zipf and BT-
S data sets, and the PageRank algorithm on the UK-2002 data
set.

The approaches are evaluated on three metrics: (1) coef-
ficient of variation (cv) of data loads, σ/µ, in which σ and
µ represent the standard deviation and the mean respectively;
(2) maximum of data loads; (3) maximum of running time.
Note that the data load of a reducer is measured by the total
size of micro-partitions allocated to it. All the experiments
were executed on a cluster consisting of one master machine
and ten slave machines. Each machine has an AMD proces-
sor with 16 2.20GHz cores, 16GB RAM, and 500GB hard
disks. Each machine was installed with the 64-bit Ubuntu
Linux 10.04 and Hadoop 1.1.2. Each machine can run up to
16 mappers or reducers simultaneously. We repeated each
experiment 3 times and reported the averaged running time.

The rest of this section is organized as follows: In Sub-
section 1, we briefly evaluate the performance of Closer. In
Subsection 2, we briefly evaluate the performance of IPS. In
Subsection 3, we present the comparative results on the syn-
thetic data. In Subsection 4, we present the comparative re-
sults on the real data set.

8.1 Performance of Closer

This subsection evaluates how the performance of Closer
varies with the chosen adjustment point. We use the syn-
thetic data and set 9 adjustment points varying from 10% of
mapping progress to 90%. The mapping phase is executed
in totally 10 rounds. The detailed evaluation results are p-
resented in Figure 9. It can be observed that reducer data
loads tend to become more balanced as the point percentage
increases. The exceptions result from sampling fluctuation.
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Table 1: Details of the Test Datasets
Dataset Algorithm Size(GB) Tuple(Billion) Description
Zip f -γ WordCount 4 1 The standard Zipf distributions

BTS WordCount 60 19 Departure and arrival times reported by U.S. air carriers. [36]
UK-2002 PageRank 2.5 0.18 A 2002 crawl of the uk performed by UbiCrawler [37]
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Fig. 9: The evalution results of Closer on Zi f p-0.7

On the consumed map and shuffle time, the performance of
Closer instead deteriorates as the point percentage increases
due to slower shuffle start points.

8.2 Performance of IPS

In this section, we evaluate the effect of amplification coeffi-
cient and the number of decision points on the performance.
We experiment this part on two synthetic data sets Zip f −0.3
and Zip f − 0.7, which contain 1,000 kinds of tuples to run
the WordCount instance.
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Fig. 10: Evaluate amplification coefficient on Zip f − 0.3/0.7

The granularity of micro-partition is mainly affected by its
total number. In this paper, we use the hash partition function
and renew it to key%(M ∗ λ). M is set to 20 and λ is denoted
as amplification coefficient. And we vary λ from 10 to 50,
increased by 10. When it is 50, each micro-partition contains
only one kind tuple who has the same value.

The experimental results are presented in Figure 10. When
the value of λ is increased from 10 to 30, both coefficient

of variation and the max load are reduced obviously on two
data sets. And the results of Zip f − 0.7 are more signifi-
cant. Continually increasing its value, the changing curve of
the coefficient of variation and the max load is smooth. For
Zip f −0.7, the value of coefficient of variation is smaller than
Zip f − 0.3’s from 30 to 50, while its max load is bigger. This
is caused by the distributions of the data set. In comparison,
the performance of IPS would be better with the large λ. And
we can increase the value of it for more skew datas. But for
different distributions, the effect can be smooth until some
value. Moreover, the larger the number of micro-partitions
is, the larger the load would be while shuffling. In our prac-
tice, it would be fine if the value of λ is between 30 and 50.
In the rest of this paper, we set the value of λ to 50.
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Fig. 11: Evaluate decision numbers on Zip f − 0.3/0.7

The number of decision points impacts how many times
should all the micro-partitions be allocated on reducers. In
this paper, we define the decision point in term of mapper-
s’ processing ratio. And we mark the first decision point as
the first mapper’s finished time, and do the same for the last.
Then we divide equally all the stage as some parts.

We do six groups of experiments and the results are pre-
sented in Figure 11. When the number of decision points is
increased from 2 to 12 , both coefficient of variation and the
max load are reducing constantly, which are obvious when
the argument is changing from 2 to 8. And both of them are
stable after 8. The reason of which is the decision points are
in the Map phase. By adding the decision points, we can
correct the deviation caused by the earlier allocation. But,
for each data set, there would be an optimal amount of de-
cision points, which is caused by the total number of micro-
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partitions. In our practice, we find the number of decision
points would be better set as 10. Thus we set it to 10 in the
rest of this paper.

8.3 Comparative Evaluation On Synthetic Data

We generate 11 sets of Zip f -γ data, where the value of γ
varies from 0 to 1. The detailed evaluation results are p-
resented in Figure 12. Figure 12 (a) reports the coefficient
of variation among reducer data loads. It can be observed
that the native Hadoop performs poorly even in the case of
γ = 0, which means that the micro-partition sizes are the least
skewed. Its coefficient of variation increases with the value of
γ. The Closer and Libra methods perform better than the na-
tive approach. It achieves well-balanced reducer workloads
when γ ≤ 0.3. However, when γ ≥ 0.4, the data loads among
reducers become considerably less balanced. It can also be
observed that IPS achieves better performance than both Na-
tive Hadoop, Closer and Libra. The results showed that IPS
achieved well-balanced reducer data loads when γ ≤ 0.7. In
the cases of 0.8 ≤ γ ≤ 1, its coefficient of variation increases
dramatically but is still smaller than those of Native Hadoop
and Closer.

To get a closer look at the performance of IPS, we al-
so present the distribution of reducer data loads in the case
of γ = 0.8 as shown in Figure 12 (d). The X-axis denotes
the reducer IDs and the Y-axis denotes their data loads. The
numbers above the rectangles in histogram represent the to-
tal numbers of micro-partitions allocated to reducers. It can
be observed that the reducer with the largest load contains
only one micro-partition. The data loads on other reducer-
s are well balanced. Experimentally, the result achieved by
IPS can be said to be the best possible with the predefined
micro-partitions.

The evaluation results on the maximum of data load and
run time are presented in Figure 12 (b) and (c) respectively.
On data load maximum, IPS performs better than colorall of
Native Hadoop, Closer and Libar. Generally, its performance
advantage increases with the size skew of micro-partitions.
The experimental results on run time are similar.

8.4 Comparative Evaluation On Real Data

We plot the distribution of key values in the BTS data in Fig-
ure 13 (a). The X-axis denotes the key values and the Y-axis
denotes the occurrence frequency of each key. It can be ob-
served that the distribution is skewed: the majority of key
values have low or moderate frequencies and only a few have
high frequencies.

The experimental evaluation results on BTS in term of co-
efficient variation, maximum data load and run time are pre-
sented in Figure 13 (b), (c) and (d) respectively. The X-axis
denotes the number of reducers. On coefficient variation, it
can be observed that IPS performs significantly better than
both Native Hadoop,Closer and Libra. On maximum load,
IPS also consistently outperforms them. The evaluation re-
sults on run time are similar to what was observed on maxi-
mum load.

The evaluation results on the UK-2002 data set are also p-
resented in Figure 14. Note that the PageRank algorithm has
to be executed iteratively on Hadoop. We suppose that the
mapping between micro-partitions and reducers remains un-
changed at each iteration. Figure 14 reports the results of the
first iteration. The experimental results are similar to what is
observed on the BTS dataset. IPS consistently outperform-
s Native Hadoop and Closer. Note that on maximum load,
plotting all the comparative results in a figure would make
the performance of the three approaches appear very similar.
Therefore, in Figure 14 (b), we only present the comparative
result with the number of reducers set to be 10. The evalua-
tion results on other numbers of reducers are similar.

With the number of reducers set to be 10, we also present
the four approaches’ performance difference on the time con-
sumed by the map, shuffle and reduce phases in Figure 14
(d). It can be observed that they consume roughly the same
time on the map phase. All of Native Hadoop, IPS and Libra
can start to shuffle mapped data once the first mapper finishes
its job. Therefore, they share the same shuffle starting point.
Since IPS reserves some micro-partitions for later allocation
commitment, it consumes slightly more time than Native on
the shuffle phase. Even though Closer may consume less time
on the shuffle phase, its shuffle phase has a later end point. Li-
bra using the range partition method is more unbalanced than
the hash partition method on UK-200. On the reduce phase,
IPS consumes the least time because it has the smallest max-
imum load. IPS also achieves the best overall performance
among them.

9 Conclusion

In this paper, we propose an incremental allocation approach
to reduce partition skew on MapReduce. The approach con-
sists of two steps: micro-partition scheduling and micro-
partition allocation. We proposed effective and efficient so-
lutions for both problems. Finally, our extensive experiments
on synthetic and real data have shown that compared with the
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Fig. 13: The Evaluation Results on BTS
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Fig. 14: The Evaluation Results on uk-2002

state-of-the-art solutions, the incremental approach achieved
considerably better data load balance as well as overall better
parallel performance.
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