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ABSTRACT
Pure machine-based solutions usually struggle in the chal-

lenging classification tasks such as entity resolution (ER). To

alleviate this problem, a recent trend is to involve the human

in the resolution process, most notably the crowdsourcing

approach. However, it remains very challenging to effec-

tively improve machine-based entity resolution with limited

human effort. In this paper, we investigate the problem of hu-

man and machine cooperation for ER from a risk perspective.

We propose to select the machine-labeled instances at high

risk of being mislabeled for manual verification. For this task,

we present a risk model that takes into consideration the

human-labeled instances as well as the output of machine

resolution. Finally, we evaluate the performance of the pro-

posed risk model on real data. Our experiments demonstrate

that it can pick up the mislabeled instances with considerably

higher accuracy than the existing alternatives. Provided with

the same amount of human cost budget, it can also achieve

better resolution quality than the state-of-the-art approach

based on active learning.
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1 INTRODUCTION
Entity resolution aims at finding the records that refer to the

same real-world entity. Usually considered as a classification

task, ER is challenging in that the records may contain in-

complete and dirty values. ER can be performed based on

rules, probabilistic theory or machine learning [5, 12]. How-

ever, the traditional machine-based solutions may not be

able to produce satisfactory results in many practical sce-

narios. Therefore, there is an increasing need to involve the

human in the resolution process for improved quality [13].

For instance, the active learning approach [10] proposed to

select the instances for manual verification based on the ben-

efit they can bring to a machine classifier. The approach of

crowdsourcing [6, 13] instead investigated how to make the

human work efficiently and effectively on a given workload.

Depending on pre-specified assumptions (e.g. partial order

relationship [3]), it usually makes the human label some in-

stances in a workload for the purpose that the remaining

instances can be automatically labeled by the machine with

high accuracy.

It can be observed that the existing hybrid approaches

select the instances for manual verification to maximize

the benefit they can bring to a given workload as a whole.

However, the marginal benefit of additional manual work

usually decreases (sometimes dramatically) with the cost.

For instance, in active learning, it has been well recognized

[11] that increasing the number of training data points may

quickly become ineffectual in improving classification per-

formance after initial iterations. In the application scenarios

where fast response is required, it is also desirable that a lim-

ited amount of human effort can be exclusively spent on the

instances at high risk of being mislabeled by the machine.

In this paper, we investigate the problem of human and

machine cooperation for improved quality from a risk per-

spective. Given a limited human cost budget, we propose to

select the machine-labeled instances at high risk of being

mislabeled for manual verification. The proposed risk-based

solution is supposed to be used in the scenario where in-

creasing training points for a learning model has become

https://doi.org/10.1145/3242153.3242156
https://doi.org/10.1145/3242153.3242156
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Figure 1: The Risk-based Solution.

ineffectual or not cost-effective in improving classification

performance. It can therefore serve as a valuable complement

to the existing learning-based solutions. On the other hand,

even though some of the proposed techniques for active

learning (e.g. training instance selection based on uncer-

tainty [7]) can be naturally applied for this task, our work

is the first to introduce the concept of risk and propose a

formal risk model for the task. The major contributions of

this paper can be summarized as follows:

• We investigate the problem of human and machine

cooperation for ER from a risk perspective and define

the corresponding optimization problem (Section. 2);

• We present a risk model for prioritizing the machine-

labeled instances for manual verification (Section. 3);

• We evaluate the performance of the proposed approach

on real data by a comparative study. The experimental

results validate its efficacy (Section. 4).

2 PROBLEM DEFINITION
Given an ER workload consisting of record pairs, a machine

classifier labels each pair as match or unmatch. Due to the

inherent challenge of entity resolution, a classifier may be

prone to mislabeling some of the pairs. In this paper, we

investigate the problem of how to improve the results of

machine resolution by manually correcting machine errors.

Since human work is expensive, we impose a budget on

the amount of spent human effort. For the sake of presen-

tation simplicity, we quantify the budget by the number of

manually-inspected pairs. Given a budget k , an ideal solution
would identify k mislabeled pairs. In this case, each manual

inspection effectively corrects a machine error. However, in

practice, it is more likely that a solution chooses both mis-

labeled and correctly labeled pairs. We formally define the

optimization problem as follows:

Definition 1. [Optimization Problem of Improving
Machine Resolution by Manual Inspection]. Given an
ER workload, D, which consists of n record pairs, {d1,d2,. . .,dn },
a machine classifier labels each pair inD asmatch or unmatch.
Given the budget k on human work, the optimization problem
is to identify a set of k machine-labeled pairs in D, denoted
by DH , for manual inspection such that the number of pairs
misclassified by the machine in DH is maximized.

Risk-based Solution. The optimization problem defined in

Definition. 1 is challenging due to the fact that the match

probabilities of the machine-labeled pairs are difficult to es-

timate. In this paper, we propose to solve the optimization

problem from a risk perspective. In other words, the machine-

labeled pairs at higher risk of being mislabeled should be

chosen first for manual inspection. It can be observed that

if risk measurement is accurate given all the available infor-

mation, the strategy of selecting by risk-wise order can be

considered optimal. The workflow of the risk-based solution

is presented in Figure. 1. It iteratively selects the most risky

machine-labeled pairs for manual inspection until the budget

limit is reached. After each iteration, the set of manually-

labeled pairs is updated, and is used to re-evaluate the risk

of the remaining machine-labeled pairs.

It is worthy to point out that the risk-based solution can

work properly with both supervised and unsupervised clas-

sifiers. Given a supervised classifier, risk analysis can be

initially performed based on the human-labeled pairs as well

as machine resolution. Given an unsupervised classifier, risk

analysis can only start with machine resolution; after initial

iterations, it can then be similarly performed based on the

human-labeled pairs as well as machine resolution.

3 RISK ANALYSIS
In this section, we propose the technique of risk analysis for

prioritizing pair selection. Given an instance pair di in D, we
represent its match probability by a random variable, Pi . As
usual, wemodel Pi by a normal distribution,N(µi ,σ

2

i ), where

µi and σ
2

i denote its expectation and variance respectively. In

the rest of this section, we first describe how to estimate the

match probability distribution in Subsection 3.1, and then

present the metric for risk measurement in Subsection 3.2.

3.1 Distribution Estimation
It can be observed that there exist two information sources

for the estimation of match probability distribution. Firstly,

even though a machine classifier may fail to produce satis-

factory resolution results, it can provide valuable hints about

the status of the pairs. Therefore, the results of machine

resolution can generally serve as a starting point for the

estimation. The second source consists of the human-labeled

results. Compared with machine labels, the labels provided

by the human are usually more accurate, i.e. they can pro-

vide more information beyond the capability of machine

resolution.

We employ the classical Bayesian inference [1] to estimate

the distribution. The inference process takes the match prob-

ability estimated by the machine as the prior expectation,

and uses the human-labeled pairs as samples to estimate the

posterior expectation and variance. The proposed approach

has the desirable property that it can seamlessly integrate
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the hints provided by both the human and the machine into

a unified inference process.

3.1.1 Prior expectation estimation by machine. A machine

classifier labels instance pairs as match or unmatch based on

a classification metric. Generally, the match probability of

a pair can be considered to be monotonous with its metric

value. In this paper, we use the SVM (Support Vector Ma-

chine) classifier based on active learning as the illustrative

example. It classifies pairs through a hyperplane. Instead of

randomly selecting training data points, it iteratively chooses

the instance pair which is closest to the hyperplane of the

current SVM as the next training data point, and updates the

SVM until a preset training budget is exhausted. Note that an

SVM classifier usually provides a pair’s distance from the hy-

perplane, rather than a match probability, as the evidence for

its given label. We therefore use Platt’s probabilistic outputs

for SVM [8] to translate the distance into a match probability.

3.1.2 Sample observation generation by human. We generate

the sample observations on the status of a target pair based

on features. Features serve as the medium to convey valu-

able information from the human-labeled pairs to a target

pair. Desirably, the features used for information conveyance

should have the following three properties:

(1) They can be easily extracted from the human-labeled

pairs;

(2) They should be evidential, or indicative of the status

of a pair;

(3) They should be to a large extent independent of the

metric used by the machine classifier.

The final property ensures that the sample observations can

provide additional valuable information not implied by ma-

chine labels. To this aim, we extract two types of features

from pairs, Same(ti ) and Diff(ti ), where ti represents a to-

ken, Same(ti ) indicates that both records in a pair contain ti ,
and Diff(ti ) indicates that one and only one record in a pair

contains ti . It can be observed that these two features are

evidential and easily extractable. Moreover, they were not

used in the existing classification metrics proposed for ER.

Suppose that a target pair, di , containsm features, which

are denoted by {f1, f2, . . ., fm }. A human-labeled pair contain-

ing all them features can be naturally considered to be a valid

observation on the status of di . Unfortunately, due to their
limited number in practical scenarios, the human-labeled

pairs with this property may not provide with sufficient ob-

servations. Therefore, we also consider the human-labeled

pairs that contain only a portion of them features in di . Sup-
pose that a human-labeled pair, dhj , contains the k features in

di , {f1, f2, . . ., fk }, but does not contain the remaining (m−k)
features. Inspired by the portfolio investment theory [9], we

treat features as stocks, and a feature’s match probability as

its investment reward. Then, the match probability of di cor-
responds to the combined reward of an investment portfolio

consisting ofm stocks, {f1, f2, . . ., fm }.
Based on the label of dhj , we generate the corresponding

sample observation on the status of di by

O j (di ) =
L(dhj ) +

∑
k<r ≤m wrE(fr )

1 +
∑

k<r ≤m wr
, (1)

in which wr denotes the feature weight, L(d
h
j ) denotes the

manual label of dhj , and E(fr ) denotes the expectation of fr ’s

match probability. In Eq. 1, L(dhj )=1 if the label is match and

L(dhj )=0 otherwise. We estimate E(fr ) by

E(fr ) =

∑
1≤s≤n L(d

r
s )

n
, (2)

in which drs denotes a human-labeled pair containing the

feature fr and n denotes its total number. An example of

sample observation generation is shown in Example 1. More

details can be found in our technical report [4]. It is worthy

to point out that in the generation of sample observations

for di , we only consider the features contained in the human-

labeled pairs. If a feature of di never appears in the human-

labeled pairs, we lack reliable information to reason about its

match probability. It is therefore ignored in the observation

generation process.

Example 1. Suppose that a target pair, d1, contains 3 fea-
tures, {f1,f2,f3}, and a pair manually labeled as unmatch by
the human, dh

2
, contains f1 and f2, but not f3. For the sake of

presentation simplicity, we also suppose that feature weights
are equally set to be 1. With the expectation of the match
probability of f3 being estimated at 0.3, the sample observa-
tion provided by dh

2
for the status of d1 is approximated by

O2(d1) =
0+0.3

2
= 0.15.

3.1.3 Bayesian inference. Given a random variable V fol-

lowing a known prior distribution, π (V ), the technique of

Bayesian inference [1] estimates the posterior distribution

of V by combining the prior information provided by π (V )

and the sample observations. In our example, the prior dis-

tribution of the match probability of a target pair, di , is rep-
resented by the normal distribution of N(µi ,σ

2

i ). Suppose

that the prior expectation of µi provided by the machine

classifier is µ0

i and the human-labeled pairs provide with n
sample observations.

As usual, we suppose that µi and σ 2

i follow a combined

conjugate prior distribution, or a normal-inverse-gamma dis-
tribution. The prior distributions of µi and σ 2

i can thus be

represented by

p(µi |σ
2

i ; µ0

i ,n
0) ∼ N(µ0

i ,
σ 2

i

n0
), (3)
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and

p(σ 2

i ;α, β) ∼ InvGamma(α0, β0), (4)

wheren0
,α0

and β0
are the hyperparameters, and InvGamma()

denotes an inverse-gamma distribution. Denoting the poste-

riors by N(µ1

i ,
σ 2

i
n1
) and InvGamma(α1, β1), we have

µ1

i =
n0 · µ0

i + n · p̄i

n0 + n
,

n1 = n0 + n,

α1 = α0 +
n

2

,

β1 = β0 +
1

2

∑
n
j=1

(p ji − p̄i )
2 +

1

2

·
n0n

n0 + n
· (µ0

i − p̄i )
2,

(5)

where p̄i denotes the average value of observed samples.

In Eq. 3 and 4, the hyperparameters n0
, α0

and β0
are used

to convey the belief about the prior information. Specifically,

given a confidence level of θ on the prior expectation µ0

i ,

we set n0 = θn/(1 − θ ). It means that the inference process

will preserve θµ0

i for the estimation of µi . Similarly, we set

α0 = n
2
· θ

1−θ +1, and β0 = S2

n · (α
0−1), in which S2

n represents

the variance of all the samples. It means that the inference

process will preserve θS2

n for the estimation of σ 2

i .

Based on the obtained posterior distributions of µi and σ
2

i ,

a point estimate µ̂i for the random variable µi (resp. σ̂
2

i for

σ 2

i ) can be inferred using a metric of Bayes risk. More details

on the Bayesian inference can be found in our technical

report [4].

3.2 Risk Model
Inspired by the portfolio investment theory [9], we employ

the metric of Conditional Value at Risk (CVaR) to measure

the risk of pairs being mislabeled by the machine. Given a

confidence level of θ , CVaR is the expected loss incurred

in the 1 − θ worst cases. Formally, given the loss function

z(X ) ∈ Lp (F ) of a portfolio X and θ , the metric of CVaR is

defined as follows:

CVaRθ (X ) =
1

1 − θ

∫
1−θ

0

VaR1−γ (X )dγ , (6)

where VaR1−γ (X ) represents the minimum loss incurred at

or below γ and can be formally represented by

VaR1−γ (X ) = in f {z∗ : P(z(X ) ≥ z∗) ≤ γ }. (7)

Given a pair, di , we denote its match probability by x ,
and its probability density function and cumulative distribu-

tion function by pd fdi (x) and cd fdi (x) respectively. If di is
labeled by the machine as unmatch, its probability of being

mislabeled by the machine is equal to x . Accordingly, its
worst-case loss corresponds to the case that x is maximal.

Therefore, given the confidence level of θ , the CVaR of di is
the expectation of z = x in the 1 − θ cases where x is from

cd f −1

di
(θ ) to +∞. Formally, the CVaR risk of a pair di with

the machine label of unmatch can be estimated by

CVaRθ (di ) =
1

1 − θ

+∞∫
cdf di

−1(θ )

pd fdi (x) · xdx . (8)

Otherwise, if di is labeled by the machine as match, its
potential loss of being mislabeled by the machine is equal to

1-x . Therefore, the CVaR risk of a pair di with the machine

label of match can be similarly estimated by

CVaRθ (di ) =
1

1 − θ

cdfdi
−1(1−θ )∫

−∞

pd fdi (x) · (1 − x)dx . (9)

4 EMPIRICAL EVALUATION
We have evaluated the performance of the proposed risk

model, denoted by CVAR, on real data by a comparative

study. We compare it with both a baseline alternative and a

state-of-the-art technique proposed for active learning [7].

The baseline method, denoted by BASE, selects the machine-

labeled pairs solely based on thematch expectation estimated

by the machine. Specifically, given a pair di and its match

probability µ0

i provided by a classifier, the risk of di with the

machine label of unmatch (resp. match) is simply estimated

to be µ0

i (resp. (1 − µ0

i )). Since the two algorithms proposed

in [7], Uncertainty and MinExpError, perform very similarly

in our experiments, we only report the results of Uncertainty.
We denote the algorithm of Uncertainty by UNCT. Intuitively,
UNCT iteratively selects the pairs that the classifier is most

uncertain about for manual verification.

Additionally, we also compare the proposed risk-based

solution (denoted by RISK) with the active learning solution

(denoted by ACTL) on the achieved resolution quality pro-

vided with the same amount of human cost budget. Note that

the ACTL solution would tune classifier parameters after ad-

ditional manual verification, thus can potentially improve

classification accuracy, while RISK would not.

We used the real datasets DBLP-Scholar
1
and Abt-Buy

2

in the empirical study. As usual, we use the standard block-

ing technique to filter the instance pairs unlikely to match.

After blocking, the DBLP-Scholar workload contains totally

41416 instance pairs, and the Abt-Buy workload contains

totally 20314 instance pairs. We employ SVM as the machine

classifier. On DBLP-Scholar, we use the Jaccard similarity

over the attributes title and authors, the edit distance over the
attributes title, authors and venue, and the number equality

over publication year as the input features for SVM. With

only 1% of input data as training data, the achieved precision

1
https://dbs.uni-leipzig.de/file/DBLP-Scholar.zip

2
https://dbs.uni-leipzig.de/file/Abt-Buy.zip

https://dbs.uni-leipzig.de/file/DBLP-Scholar.zip
https://dbs.uni-leipzig.de/file/Abt-Buy.zip
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(a) The DBLP-Scholar dataset.
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(b) The Abt-Buy dataset.

Figure 2: Pick-up accuracy comparison.
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(b) The Abt-Buy dataset.

Figure 3: Resolution quality comparison between
RISK and ACTL.

and recall of the SVM classifier are 0.917 and 0.875 respec-

tively. On Abt-Buy, we use the Jaccard similarity and edit

distance over the attributes product name and description
respectively as the input features for SVM. With only 2%

of input data as training data, the achieved precision and

recall are 0.567 and 0.338 respectively. In the implementation

of risk analysis, the confidence level θ is set to 0.8. Since a

valid match probability should be between 0 and 1, we trans-

form the inferred normal distribution to a truncated normal
distribution in the range of 0 to 1 [2].

The comparative results on pick-up accuracy are presented

in Figure 2. It can be observed that provided with the same

amount of budget, CVAR consistently picks up more mis-

labeled pairs than BASE and UNCT. Since both BASE and

UNCT reason about the risk based on the match expectation

estimated by the machine, it should not be surprising that

they perform similarly. The improvement margins of CVAR

over the alternatives first enlarge with the increase of bud-

get, but then gradually narrow down as expected. Since the

number of mislabeled pairs decreases with additional manual

inspections, the performance difference between different ap-

proaches tend to decrease as well. These experimental results

clearly validate the efficacy of the proposed risk model.

The comparative results on resolution quality, measured

by the F-1 metric, between RISK and ACTL, are also pre-

sented in Figure 3. The achieved quality is measured on the

results consisting of both manually labeled pairs and the

pairs labeled by the classifier. It can be observed that after

initial iterations, RISK achieves considerably better quality

than ACTL. Even though ACTL uses the additional labeled

data to update its classifier, the marginal benefit of additional

training data points drops quickly with the increase of bud-

get as expected. These experimental results show that the

risk-based approach can be more effective than the active

learning approach in improving resolution quality.

5 CONCLUSION
In this paper, we propose to investigate the problem of hu-

man and machine cooperation for ER from a risk perspective.

We have presented a risk model and empirically validated its

efficacy. It is worthy to point out that the proposed risk-based

framework can be potentially generalized for other classifi-

cation tasks. It is interesting to investigate its application in

the scenarios besides ER in future work.
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