
GraphU: A Unified Vertex-Centric Parallel Graph
Processing Platform

Jing Su, Qun Chen, Zhuo Wang, Murtadha Ahmed, Zhanhuai Li
School of Computer Science, Northwestern Polytechnical University, Xi’an, ShaanXi, China
jinjin-su@163.com,{chenbenben@, wzhuo918@mail., a.murtadha@mail.,lizhh@}nwpu.edu.cn

Abstract—Many synchronous and asynchronous dis-
tributed platforms based on the Bulk Synchronous Par-
allel (BSP) model have been built for large-scale vertex-
centric graph processing. Unfortunately, a program
designed for a synchronous platform may not work
properly on an asynchronous one. As a result, given
the same problem, end users may be required to design
different parallel algorithms for different platforms.
Recently, we have proposed a unified programming
model, DFA-G (Deterministic Finite Automaton for
Graph processing), which expresses the computation
at a vertex as a series of message-driven state transi-
tions. It has the attractive property that any program
modeled after it can run properly across synchronous
and asynchronous platforms.
In this demo, we first propose a framework of

complexity analysis for DFA-G automaton and show
that it can significantly facilitate complexity analysis
on asynchronous programs. Due to the existing
BSP platforms’ deficiency in supporting efficient
DFA-G execution, we then develop a new prototype
platform, GraphU. GraphU was built on the popular
open-source Giraph project. But it entirely removes
synchronization barriers and decouples remote
communication from vertex computation. Finally,
we empirically evaluate the performance of various
DFA-G programs on GraphU by a comparative study.
Our experiments validate the efficacy of the proposed
complexity analysis approach and the efficiency of
GraphU.

Video: http://www.wowbigdata.com.cn/GraphU/
video.html.

I. Introduction
A lot of systems based on the BSP model have been built

for large-scale parallel graph processing in a distributed
environment. However, the native BSP implementations
(e.g. Pregel [1] and Giraph [2]) may cause substantial
inefficiency due to frequent synchronization and communi-
cation among parallel workers. Therefore, many alternative
platforms (e.g. Giraph Unchained [3] and GraphHP [4])
have been proposed to facilitate asynchronous execution
on BSP programs for improved efficiency. Unfortunately,
asynchronism also brings about an undesirable side effect:
a BSP program designed for synchronous platforms may
not run properly on asynchronous ones. As a result,
given the same problem, end users usually have to design
different parallel algorithms for different platforms. To
solve this incompatibility, we have recently proposed a
unified programming model, DFA-G [5]. Expressing the
computations at a vertex as a series of message-driven
state transitions, DFA-G can ensure that a program

modeled after it can work properly across synchronous
and asynchronous platforms.
Even though complexity analysis on synchronous BSP

programs has been extensively studied in the literature [6],
complexity analysis on asynchronous ones is usually much
more complicated, thus still remains an open challenge.
DFA-G has the attractive property that vertex computa-
tions are entirely driven by received messages. Accordingly,
the computational complexity of a DFA-G automaton
coincides with the total number of messages exchanged
between vertices. Therefore, complexity analysis on an
asynchronous DFA-G program can be greatly simplified
by performing complexity analysis on its corresponding
automaton.
On the other hand, even though the existing asyn-

chronous platforms can to some extent alleviate the
inefficiency resulting from frequent synchronizations among
workers, they did not entirely remove the requirement of
global synchronization. Moreover, they can only optimize
vertex execution order by simple default or user-specified
settings. The central concepts of DFA-G, state and state
transition, were not even taken into their design considera-
tion. As a result, they can not effectively support efficient
execution of DFA-G programs. To this end, we develop a
new prototype platform, GraphU, based on the popular
open-source Giraph project [2]. The major contributions
of this demo can be summarized as
1) We propose a framework of complexity analysis for

DFA-G automaton and show that it can significantly
simplify complexity analysis on asynchronous BSP
programs; (Section 2)

2) We develop a new prototype system, GraphU, which
can effectively optimize the execution efficiency of
DFA-G programs; (Section 3)

3) We empirically evaluate the performance of various
DFA-G programs on GraphU. Our experimental
results validate the efficacy of the proposed complex-
ity analysis approach and the efficiency of GraphU.
(Section 4)

II. DFA-G Programming Model
A. Model Overview

Formally, a DFA-G automaton models vertex computa-
tion by a 5-tuple, (S,M,A, T ,SO), in which:
• S denotes a finite set of vertex states.
• M denotes a finite set of types of the messages

exchanged between vertices.

• A denotes a finite set of types of the actions taken by
a vertex upon receiving a message.

• T denotes a transition function T : S ×M A−→ S. The
function specifies the state transition at a vertex upon
receiving a message and the action it needs to take.

• SO denotes an initial state of vertices. Initially, no
message exists in an automaton. Therefore, in the
definition of T , SO usually has to make a state
transition unconditionally without being triggered by
any message.

Similar to the native DFA, DFA-G incurs state transition
upon receiving a message (except in the initial state SO).
It however assumes that once a vertex completes a state
transition, it becomes inactive. An inactive vertex can only
be reactivated by a new message. Since state transition can
terminate at any possible state, the automaton does not
need to specify final states. In the automaton definition, a
message definition (M) can contain updatable parameters,
which are usually used to transfer the values between
vertices. An action definition (A) usually involves sending
messages to one or more destination vertices and updating
the values of vertex, edge and message parameters. In
DFA-G, state transition at a vertex is solely determined
by its current state and the type of the message it
receives. The values of the updatable parameters can
not affect the progress of state transition. By expressing
vertex computation as a series of message-driven state
transitions, DFA-G processes messages in a one-at-a-time
manner without regard to their arrival order. Its algorithmic
correctness is thus independent of the processing order of
messages.

Ab
3

Ab
2

Ab
1

Sr
2

L: R:

Sr
1

Sr
0Sl

0 Sl
1

Sl
3 Sl

4

Sl
2 Sr

3

R (Request) G (Grant) D (Deny)A (Accept) RM (Rematch)

L:
R:Sl

0 Sl
1 Sl

2 Sr
0 Sr

2Sr
1

L:
R:Sl

0 Sl
1 Sl

2 Sr
0 Sr

2Sr
1

R(*)

D

R(1) : send only one R message as a response

R(*) : send R messages to all the neighbors

Messages types:

: Receive Messages

: Send Messages

R(*)

Null

Null

D

D(1)

R

D(1)

G

G(1)

R

A(1)

G

V

A

R(*)

RM

D(1)

G

R(*)

Null

A(1)

G

RM(*)

D

G(1)

R

V

A

R(*)

Null

G(1)

R

A(1)

G

D(1)

G

R(*)

D

G(1)

R

A(1)

G

R(*)

D

V

A

D(1)

G

V

A

Figure 1. DFA automatons for BM

Three different DFA-G automatons for the problem of
bipartite matching (BM) are shown in Figure 1, in which
the automatons of left and right vertices are presented
separately. Given a bipartite graph, the BM problem is to
find a maximal matching, in which no additional edge
can be added without sharing an end point. Detailed
explanations on the presented automatons are omitted

here due to space constraint, but can be found in our
technical report [7].

B. Framework of Complexity Analysis for Automaton
The computational cost of a DFA-G program includes

both the cost of DFA-G automaton (state transition)
and the cost of specified vertex computations. In this
subsection, we define the soundness and complexity of a
DFA-G automaton. Note that the computational complexity
of a DFA program can be easily estimated based on the
complexity results of its corresponding automaton and vertex
computations.
Automaton Soundness. Note that the total number of
messages generated by an automaton running on a graph
depends on the graph and the order of vertex execution as
well as the automaton itself. Soundness analysis considers
the worst case of running an automaton on a graph.
Formally, we define the soundness of a DFA-G automaton
as follows:
Definition 1: A DFA-G automaton, A, is sound if and

only if ∀ G and ∀ χ, in which G represents a graph and χ
represents an instance of vertex execution order, the number
of messages generated by running A on G by the order of
χ is finite.
Intuitively, if A is not sound, then there exists a graph

and an instance of vertex execution order s.t. A can not
even terminate on the graph. For instance, the automaton
presented in Figure. 1 is not sound. Consider the following
vertex execution sequence: a right vertex (vi) in the state
of S1

r , upon receiving a request message from a left vertex
(vj) in the state of S1

l , sends a deny message to vj , vj in
return sends a request message to vi. The actions of vi and
vj result in a message loop. The automaton therefore can
not terminate in the worst case.
Automaton Complexity. If a DFA-G automaton is
sound, we measure its computational complexity by its
worst-case running cost, which corresponds to the total
number of messages generated in the worst case. Formally,
the computational complexity of an automaton is defined
as follows:
Definition 2: A sound DFA-G automaton, A, has the

computational complexity of O(ω) if and only if ∀ G and ∀
χ, the number of messages generated by running A on G by
the order of χ is bounded by O(ω), in which G represents
a graph and χ represents an instance of vertex execution
order.

Consider the automaton for BM, A2
b , shown in Figure. 1.

Firstly, the automaton is sound because it contains no
message loop. Secondly, a left vertex can deny its neighbor-
ing right vertex at most once, it can thus receive at most
O(K2) rematch messages from all its neighboring right
vertices, where K denotes the maximal vertex degree in
the graph. Therefore, the complexity of the automaton A2

b

can be represented by O(N ·K3), in which N denotes the
total number of vertices in the graph. The automaton of A3

b

as shown in Figure. 1 however has the better complexity
of O(N ·K2). It reduces the complexity by allowing both
left and right vertices to initiate the handshake process.
It is worthy to point out that the complexity of an

automaton may not necessarily coincide with the parallel
efficiency of its corresponding program. Besides automaton
complexity, parallel efficiency also depends on communica-
tion latency and workload balance. Nonetheless, combined
with the complexity of specified vertex computations, a big-O
automaton complexity result can provide with an upperbound
estimate on the efficiency of a DFA-G program. A a result,
it can serve as an effective performance indicator of its
corresponding parallel program.
Automaton Execution Optimization. Soundness and
complexity analysis estimate the worst-case computational
cost of an automaton. However, the actual running cost
of an automaton may to a large extent depend on vertex
execution order. The influence of vertex execution order
on program efficiency has also been widely recognized in
the empirical study conducted on existing asynchronous
systems [8]. The existing systems usually optimize vertex
execution order based on vertex parameter values or
message list size. In addition to these metrics, the DFA-G
automaton provides with a more intuitive (in terms of user
understanding) and more effective (in terms of performance
improvement) option based on vertex state. For instance,
consider the automaton, A1

b , shown in Figure. 1. In the
worst case, it can not even terminate. However, if a left
vertex in the state of S2

l is always processed before a right
vertex in the state of S1

r if they are simultaneously active,
the message loop would be broken. Its efficiency can instead
be bounded by O(N ·K3). For more examples on state-
based vertex execution optimization, please refer to our
technical report [7].

III. GraphU System

Communication

Controller

Interface Part

Execution Part

Convergence

Controller

N

YN

Y
N

Y

(a) Overview

Initialization

Process Q

Ql < δ? Load Q = Ql

Load Q = Ql∪ Qr

Q = Φ?

Send statistics to

Convergence Controller

Termination?

(b) Workflow

BSP Programming Interface

Ql : Local messages queue

Qr : Remote messages queue

Q : Unified messages queue

Execution Engine

Automaton GUI

End

Figure 2. GraphU Platform
We have developed a new prototype system, GraphU, to

effectively support efficient execution of DFA-G programs.
GraphU was built on the open-source Giraph project[2].
The platform overview of GraphU is presented in Figure. 2
(a). It consists of two parts: interface and execution.
GraphU provides with a GUI interface, in which users
can specify a DFA-G automaton by simple clicking and

drawing. It transforms an automaton into a runnable
BSP code. GraphU shares the same code interface with
Giraph. The execution part contains three components:
the execution engine, the communication controller and
the convergence controller. The execution engine schedules
and executes vertex computations, the communication con-
troller is responsible for communication between workers,
and the convergence controller automatically detects the
termination of a running automaton. In the rest of this
section, we briefly describe our implementation of execution
engine. More details on the system implementations can
be found in the technical report [7]. All the source codes
can also be downloaded at [7].

The workflow of the execution engine at a given worker
is presented in Figure. 2 (b). Since running a DFA-G
automaton does not require any global synchronization,
GraphU entirely removes global synchronization and de-
couples vertex computations from remote communication.
Each worker maintains two message queues, one for the
messages destined for the local worker and the other for the
messages destined for remote workers. After initialization,
it would retrieve the messages from both queues into main
memory and organize them by their destination vertices
in a hashmap. Vertex computations are then sequentially
executed until the message hashmap becomes empty.
Vertex computation usually triggers state transitions and
meanwhile generates new messages. The new messages are
sent to their respective queues according to their destina-
tions. In a distributed environment, the communication
between workers is usually much more prohibitive than the
communication between vertices within the same worker.
Therefore, in GraphU, a worker would first process the
local messages. It would retrieve the messages sent from
remote workers if and only if the number of local messages
to be processed falls below a pre-specified threshold. If
execution priority is specified on vertices, each worker
would first order the active vertices by their priority degrees
and then sequentially process the vertices. In our current
implementation, priority can be set based on vertex state,
vertex value or the number of messages. More options can
however be similarly implemented on GiraphU.

IV. Evaluation and Demo Plan

S0

S2

M (Match) UM (Unmatch)

S1

Update_Status():

If (status=unmatch),

 send itself UC;

UC (Unmatch Confirmation)Messages types: MC (Match Confirmation)

M(*) : send M messages to all the parents

UC

UM(*)

UM

S0

S4

S3

Update_Status():

If (status=match),

 send itself MC;

MC

M(*)

M

Ap
1

Ap
2

Figure 3. DFA automatons for PM
We empirically evaluate the performance of different

DFA-G programs for Bipartite Matching (BM) and Pattern
Matching (PM) on real graphs. The goal of PM is to find
all the matches of a given graph pattern. Only preserving
the child relationships of each vertex, PM provides a

Table I
Performance Comparison of DFA-G Programs

BM PM
A1

b A2
b A3

b A1
p A2

p

No. of Messages (mil) fail 135.83 102.89 9.65 4.65
Runtime (s) fail 46.08 31.90 34.09 24.42

practical alternative to subgraph isomorphism by relaxing
its stringent matching conditions [9]. We have implemented
the three DFA-G automatons shown in Figure. 1 for
BM. For PM, we have implemented the two DFA-G
automatons shown in Figure. 3. It can be observed that
both automatons of A1

p and A2
p have the complexity of

O(|V |+ |E|), in which |V | and |E| denote the numbers of
vertices and edges in a graph respectively. In A1

p, a vertex
would propagate its status to its parents if and only if its
status changes from match to unmatch. In contrast, in A2

p, a
vertex would propagate its status to its parents if and only if
its status changes from unmatch to match. We also compare
GraphU with the alternative platforms sharing the same
BSP programming interface, Giraph and GiraphUC, which
are synchronous and asynchronous respectively. Note that
even though GiraphUC is asynchronous, it still requires
global synchronization.
The BM programs are run on the real dataset of com-

orkut 1 and the PM programs are run on the real dataset
of ACM-citation 2. All the programs are run on a cluster
consisting of 7 machines, each of which is equipped with
a memory of 16 G, a disk storage of 500G and 16 AMD
Opteron processors of 2.6GHz frequency. We compare the
performance of DFA-G programs on the metrics of the
number of generated messages and the consumed runtime.
Due to DFA-G’s execution uncertainty, we report the
results averaged over three runs. On GraphU, all the
programs were run without priority setting. Due to space
limit, please refer to our technical report [7] for the effect
of priority setting on DFA-G’s execution performance.
The performance comparison between different DFA-

G programs is presented in Table. I. On BM, it can
be observed that A3

b performs better than A2
b , which in

turn performs better than A1
b . A1

b in all the three runs
generates so many messages s.t. the system collapses
due to memory overflow. These experimental results are
consistent with the theoretical complexity analysis results
on DFA-G automatons. The experimental results on PM
are similar. A2

p performs considerably better than A1
p on

both metrics. In the real test graph, the number of matching
(including partially matching) vertices is much less than
the number of unmatching vertices. These experimental
results demonstrate that automaton complexity analysis
can effectively predict the parallel performance of DFA-G
programs.
The experimental results of comparing GraphU with

Giraph and GiraphUC are also presented in Table. II. All
the platforms run the same DFA-G programs. For BM and

1http://snap.stanford.edu/data/index.html#communities
2https://www.aminer.cn/citation

Table II
GraphU vs Giraph and GiraphUC

runtime (s) Giraph GiraphUC GraphU
A3

b 53.51 62.63 31.90
A2

p 42.547 37.30 24.42

PM, we run the DFA-programs of A3
b and A2

p respectively. It
can be observed that GraphU performs considerably better
than both Giraph and GiraphUC on runtime. GraphU can
significantly improve performance by entirely removing
global synchronization and decoupling vertex computation
from remote communication. These observations validate
the efficiency of GraphU.

Interface Panel Execution Panel

Figure 4. The demo system of GraphU

Demo Plan. The demo system of GraphU, whose screen-
shots are presented in Figure. 4, consists of two panels,
interface panel and execution panel. In the interface panel,
users can manually construct a DFA-G automaton by
simple clicking and drawing operations, and the system
would automatically translate a constructed automaton
into an executable BSP code. In the execution panel, users
can run different DFA-G programs on different platforms
and compare their performance. The attendees will be
invited to construct automatons and run DFA-G programs
using different datasets on a laptop.

References
[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” in Proceedings of the ACM International
Conference on Management of data (SIGMOD), 2010, pp. 135–
146.

[2] “Apache giraph.” [Online]. Available: http://giraph.apache.org/
[3] M. Han and K. Daudjee, “Giraph unchained: Barrierless asyn-

chronous parallel execution in pregel-like graph processing sys-
tems,” vol. 8, no. 9. VLDB Endowment, 2015, pp. 950–961.

[4] Q. Chen, S. Bai, Z. Li, Z. Gou, B. Suo, and W. Pan, “Graphhp:
A hybrid platform for iterative graph processing,” 2017. [Online].
Available: https://arxiv.org/pdf/1706.07221.pdf

[5] B. Suo, J. Su, Q. Chen, Z. Li, and W. Pan, “Dfa-g: A unified
programming model for vertex-centric parallel graph processing,”
in IEEE 16th International Conference on Data Mining, Demo
Track, 2016, pp. 1328–1331.

[6] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin,
“Scalable big graph processing in mapreduce,” in Proceedings of
the 2014 ACM SIGMOD international conference on Management
of data. ACM, 2014, pp. 827–838.

[7] GraphU. [Online]. Available: http://www.wowbigdata.com.cn/
GraphU/demo.html

[8] G. Wang, W. Xie, A. J. Demers, and J. Gehrke, “Asynchronous
large-scale graph processing made easy.” in CIDR, vol. 13, 2013,
pp. 3–6.

[9] A. Fard, M. U. Nisar, L. Ramaswamy, J. A. Miller, and M. Saltz,
“A distributed vertex-centric approach for pattern matching in
massive graphs,” in IEEE International Conference on Big Data.
IEEE, 2013, pp. 403–411.

